[Home bibliotech]
Home > Les thèses en ligne de l'INP

Navigation visuelle d'un robot mobile dans un environnement d'extérieur semi-structuré

Avina Cervantes, Juan Gabriel (2005) Navigation visuelle d'un robot mobile dans un environnement d'extérieur semi-structuré. (Vision-based navigation of a mobile robot in an outdoor semi-structured environment.)

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6.92 Mo

Abstract

Cette thèse porte sur le traitement automatique d'images couleur, et son application à la robotique dans des environnements semi-structurés d'extérieur. Nous proposons une méthode de navigation visuelle pour des robots mobiles en utilisant une caméra couleur. Les domaines d'application de ce travail se situent dans l'automatisation de machines agricoles, en vue de la navigation automatique dans un réseau de chemins (pour aller d'une ferme à un champ par exemple). Nous présentons tout d'abord une analyse des principaux travaux de recherche dans la littérature sur la navigation visuelle. Une chaîne de pré-traitement pour le rendu couleur d'images numériques mono-capteur dotées d'un filtre Bayer est présentée ; elle se base sur une étude des techniques de démosaïquage, le calibrage chromatique d'images (balance de blancs) et la correction gamma. Une méthode d'interprétation monoculaire de la scène courante permet d'extraire les régions navigables et un modèle 2D de la scène. Nous traitons de la segmentation d'une image couleur en régions, puis de la caractérisation de ces régions par des attributs de texture et de couleur, et enfin, de l'identification des diverses entités de la scène courante (chemin, herbe, arbre, ciel, champ labouré,. . . ). Pour cela, nous exploitons deux méthodes de classification supervisée : la méthode de Support Vector Machine (SVM) et celle des k plus proches voisins (k-PPV). Une réduction d'information redondante par une analyse en composantes indépendantes (ACI) a permis d'améliorer le taux global de reconnaissance. Dans un réseau de chemins, le robot doit reconnaître les intersections de chemins lui permettant (a) dans une phase d'apprentissage, de construire un modèle topologique du réseau dans lequel il va devoir se déplacer et (b) dans une phase de navigation, de planifier et exécuter une trajectoire topologique définie dans ce réseau. Nous proposons donc une méthode de détection et classification du chemin : ligne droite, virage gauche, virage droite, carrefour en X, en T ou en Y. Une approche pour la représentation de la forme et de la catégorisation des contours (Shape Context) est utilisée à cet effet. Une validation a été effectuée sur une base d'images de routes ou chemins de campagne. En exploitant cette méthode pour détecter et classifier les noeuds du réseau de chemins, un modèle topologique sous forme d'un graphe est construit ; la méthode est validée sur une séquence d'images de synthèse. Enfin, dans la dernière partie de la thèse, nous décrivons des résultats expérimentaux obtenus sur le démonstrateur Dala du groupe Robotique et IA du LAAS-CNRS. Le déplacement du robot est contrôlé et guidé par l'information fournie par le système de vision à travers des primitives de déplacement élémentaires (Suivi-Chemin, Suivi-Objet, Suivi-Bordure,. . . ). Le robot se place au milieu du chemin en construisant une trajectoire à partir du contour de cette région navigable. étant donné que le modèle sémantique de la scène est produit à basse fréquence (de 0,5 à 1 Hz) par le module de vision couleur, nous avons intégré avec celui-ci, un module de suivi temporel des bords du chemin (par Snakes), pour augmenter la fréquence d'envoi des consignes (de 5 à 10 Hz) au module de locomotion. Modules de vision couleur et de suivi temporel doivent être synchronisés de sorte que le suivi puisse être réinitialisé en cas de dérive. Après chaque détection du chemin, une trajectoire sur le sol est planifiée et exécutée ; les anciennes consignes qui ne sont pas encore exécutées sont fusionnées et filtrées avec les nouvelles, donnant de la stabilité au système. ABSTRACT : This thesis deals with the automatic processing of color images, and its application to robotics in outdoor semi-structured environments. We propose a visual-based navigation method for mobile robots by using an onboard color camera. The objective is the robotization of agricultural machines, in order to navigate automatically on a network of roads (to go from a farm to a given field). Firstly, we present an analysis of the main research works about visual-based navigation literature. A preprocessing chain for color rendering on mono-sensor digital images equipped with a Bayer filter, is presented ; it is based on the analysis of the demosaicking techniques, the chromatic calibration of images (white point balance) and the correction gamma. Our monocular scene interpretation method makes possible to extract the navigable regions and a basic 2D scene modeling. We propose functions for the segmentation of the color images, then for the characterization of the extracted regions by texture and color attributes, and at last, for their classification in order to recognize the road and other entities of the current scene (grass, trees, clouds, hedges, fields,. . . ). Thus, we use two supervised classification methods : Support Vector Machines (SVM) and k nearest neighbors (k-NN). A redundancy reduction by using independent components analysis (ICA) was performed in order to improve the overall recognition rate. In a road network, the robot needs to recognize the roads intersections in order to navigate and to build a topological model from its trajectory. An approach for the road classification is proposed to recognize : straight ahead, turn-left, turn-right, road intersections and road bifurcations. An approach based on the road shape representation and categorization (shape context) is used for this purpose. A validation was carried out on an image dataset of roads or country lanes. By exploiting this method to detect and classify the nodes of a road network, a topological model based on a graph is built ; the method is validated on a sequence of synthetic images. Finally, Robot displacement is controlled and guided by the information provided by the vision system through elementary displacement primitives (Road-Follow, Follow-Object, Follow-Border,. . . ). Robot Dala is placed in the middle of the road by computing a trajectory obtained from the navigable region contours. As retrieving semantic information from vision is computationally demanding (low frequency 0.5 ¼ 1 Hz), a Snakes tracking process was implemented to speed up the transfer of instructions (5 ¼ 10 Hz) to the locomotion module. Both tasks must be synchronized, so the tracking can be re-initialized if a failure is detected. Locomotion tasks are planned and carried out while waiting for new data from the vision module ; the instructions which are not yet carried out, are merged and filtered with the new ones, which provides stability to the system.

Department or laboratory:Laboratoire d'Analyse et d'Architecture des Systèmes - LAAS (Toulouse, France)
Directeur de thèse:Devy, Michel
Uncontrolled Keywords:Segmentation couleur – Texture – Classification – Topologie - Robotique mobile - Navigation visuelle. KEYWORDS : Color segmentation – Texture – Classification – Topology - Mobile robotics - Visual navigation
Subjects:Computer science > Computer science and telecommunications
Deposited On:29 September 2005

Archive Staff Only: edit this record


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication