[Home bibliotech]
Home > Les thèses en ligne de l'INP

Spectral two-level preconditioners for sequences of linear systems

Martin, Emeric (2005) Spectral two-level preconditioners for sequences of linear systems. (Préconditioneurs spectraux deux niveaux pour des systèmes linéaires donnés en séquence.)

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2.34 Mo

Abstract

De nombreuses simulations numériques nécessitent la résolution d'une série de systèmes linéaires impliquant une même matrice mais des second-membres différents. Des méthodes efficaces pour ce type de problèmes cherchent à tirer bénéfice des résolutions précédentes pour accélérer les résolutions restantes. Deux grandes classes se distinguent dans la façon de procéder: la première vise à réutiliser une partie du sous-espace de Krylov, la deuxième à construire une mise à jour du préconditionneur à partir de vecteurs approximant un espace invariant. Dans cette thèse, nous nous sommes intéressés à cette dernière approche en cherchant à améliorer le préconditionneur d'origine. Dans une première partie, une seule mise à jour du préconditionneur est considérée pour tous les systèmes. Cette mise à jour consiste en une correction spectrale de rang faible qui permet de translater de un la position des plus petites valeurs propres en module de la matrice du système préconditionné de départ. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES couplée à un préconditionneur de type inverse approchée. L'information spectrale est obtenue par un solveur de valeurs propres lors d'une phase préliminaire au calcul. Dans une deuxième partie, on autorise une possible mise à jour entre chaque système. Une correction spectrale incrémentale est proposée. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES-DR, d'une part parce qu'elle est efficace en tant que solveur linéaire, et d'autre part parce qu'elle permet une bonne approximation des petites valeurs propres au cours de la résolution linéaire. Des stratégies sont développées afin de sélectionner l'information spectrale la plus pertinente. Ces approches ont été validées sur des problèmes de grande taille issus de simulations industrielles en électromagnétisme. Dans ce but, elles ont été implantées dans un code parallèle développé par EADS-CCR. ABSTRACT : Many numerical simulations in scientific and engineering applications require the solution of a set of large linear systems involving the same coefficient matrix but different right-hand sides. Efficient methods for tackling this problem attempt to benefit from the previously solved right-hand sides for the solution of the next ones. This goal can be achieved either by recycling Krylov subspaces or by building preconditioner updates based on near invariant subspace information. In this thesis, we focus our attention on this last approach that attempts to improve a selected preconditioner. In the first part, we consider only one update of the preconditioner for all the systems. This update consists of a spectral low-rank correction that shifts by one the smallest eigenvalues in magnitude of the matrix of the original preconditioned system. We perform experiments in the context of the GMRES method preconditioned by an approximate inverse preconditioner. The spectral information is computed by an eigensolver in a preprocessing phase. In the second part, we consider an update of the preconditioner between each system. An incremental spectral correction of the preconditioner is proposed. We perform experiments using the GMRES-DR method, thanks to its efficiency as a linear solver and its ability to recover reliable approximations of the desired eigenpairs at run time. Suitable strategies are investigated for selecting reliable eigenpairs. The efficiency of the proposed approaches is in particular assessed for the solution of large and challenging problems in electromagnetic applications. For this purpose, they have been implemented in a parallel industrial code developed by EADS-CCR.

Department or laboratory:Centre Européen de Recherche et Formation Avancées en Calcul Scientifique - CERFACS (Toulouse, France)
Directeur de thèse:Giraud, Luc
Uncontrolled Keywords:Systèmes linéaires denses et creux - Méthodes de Krylov – GMRES – GMRES-DR - Préconditionneur spectral incrémental - Valeurs harmoniques de Ritz - Simulations numériques de grande taille en électromagnétisme - Calcul sientifique - Calcul parallèle distribué. KEYWORDS : Dense and sparse linear systems - Krylov methods – GMRES - GMRES-DR – Incremental spectral preconditioner - Harmonic Ritz value - Large scale numerical simulations in electromagnetism - Scientific computing - Parallel distributed computing.
Subjects:Computer science
Deposited On:04 October 2005

Archive Staff Only: edit this record


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication