[Home bibliotech]
Home > Les thèses en ligne de l'INP

Contributions à l'étude de la classification spectrale et applications

Mouysset, Sandrine (2010) Contributions à l'étude de la classification spectrale et applications. (Contributions to the study of spectral clustering and applications.)

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6.06 Mo

Abstract

La classification spectrale consiste à créer, à partir des éléments spectraux d'une matrice d'affinité gaussienne, un espace de dimension réduite dans lequel les données sont regroupées en classes. Cette méthode non supervisée est principalement basée sur la mesure d'affinité gaussienne, son paramètre et ses éléments spectraux. Cependant, les questions sur la séparabilité des classes dans l'espace de projection spectral et sur le choix du paramètre restent ouvertes. Dans un premier temps, le rôle du paramètre de l'affinité gaussienne sera étudié à travers des mesures de qualités et deux heuristiques pour le choix de ce paramètre seront proposées puis testées. Ensuite, le fonctionnement même de la méthode est étudié à travers les éléments spectraux de la matrice d'affinité gaussienne. En interprétant cette matrice comme la discrétisation du noyau de la chaleur définie sur l'espace entier et en utilisant les éléments finis, les vecteurs propres de la matrice affinité sont la représentation asymptotique de fonctions dont le support est inclus dans une seule composante connexe. Ces résultats permettent de définir des propriétés de classification et des conditions sur le paramètre gaussien. A partir de ces éléments théoriques, deux stratégies de parallélisation par décomposition en sous-domaines sont formulées et testées sur des exemples géométriques et de traitement d'images. Enfin dans le cadre non supervisé, le classification spectrale est appliquée, d'une part, dans le domaine de la génomique pour déterminer différents profils d'expression de gènes d'une légumineuse et, d'autre part dans le domaine de l'imagerie fonctionnelle TEP, pour segmenter des régions du cerveau présentant les mêmes courbes d'activités temporelles. ABSTRACT : The Spectral Clustering consists in creating, from the spectral elements of a Gaussian affinity matrix, a low-dimension space in which data are grouped into clusters. This unsupervised method is mainly based on Gaussian affinity measure, its parameter and its spectral elements. However, questions about the separability of clusters in the projection space and the spectral parameter choices remain open. First, the rule of the parameter of Gaussian affinity will be investigated through quality measures and two heuristics for choosing this setting will be proposed and tested. Then, the method is studied through the spectral element of the Gaussian affinity matrix. By interpreting this matrix as the discretization of the heat kernel defined on the whole space and using finite elements, the eigenvectors of the affinity matrix are asymptotic representation of functions whose support is included in one connected component. These results help define the properties of clustering and conditions on the Gaussian parameter. From these theoretical elements, two parallelization strategies by decomposition into sub-domains are formulated and tested on geometrical examples and images. Finally, as unsupervised applications, the spectral clustering is applied, first in the field of genomics to identify different gene expression profiles of a legume and the other in the imaging field functional PET, to segment the brain regions with similar time-activity curves.

Department or laboratory:Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
Directeur de thèse:Noailles, Joseph and Ruiz, Daniel
Uncontrolled Keywords:Classification non supervisée - Classification spectrale - Noyau gaussien - Equation de la chaleur - Éléments finis - Parallélisation - Imagerie médicale. KEYWORDS : Clustering - Spectral clustering - Gaussian kernel - Heat equation - Finite elements - Parallelization - Medical imaging
Subjects:Applied mathematics
Deposited On:18 April 2011

Archive Staff Only: edit this record


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication