[Accueil bibliotech]
Accueil > Les thèses en ligne de l'INP

Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides

Rouet, François-Henry (2012) Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. (Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux.)

Texte intégral disponible au format :

PDF - Nécessite un logiciel de visualisation PDF comme GSview, Xpdf ou Adobe Acrobat Reader
2.23 Mo

Résumé

Nous nous intéressons à la résolution de systèmes linéaires creux de très grande taille sur des machines parallèles. Dans ce contexte, la mémoire est un facteur qui limite voire empêche souvent l’utilisation de solveurs directs, notamment ceux basés sur la méthode multifrontale. Cette étude se concentre sur les problèmes de mémoire et de performance des deux phases des méthodes directes les plus coûteuses en mémoire et en temps : la factorisation numérique et la résolution triangulaire. Dans une première partie nous nous intéressons à la phase de résolution à seconds membres creux, puis, dans une seconde partie, nous nous intéressons à la scalabilité mémoire de la factorisation multifrontale. La première partie de cette étude se concentre sur la résolution triangulaire à seconds membres creux, qui apparaissent dans de nombreuses applications. En particulier, nous nous intéressons au calcul d’entrées de l’inverse d’une matrice creuse, où les seconds membres et les vecteurs solutions sont tous deux creux. Nous présentons d’abord plusieurs schémas de stockage qui permettent de réduire significativement l’espace mémoire utilisé lors de la résolution, dans le cadre d’exécutions séquentielles et parallèles. Nous montrons ensuite que la façon dont les seconds membres sont regroupés peut fortement influencer la performance et nous considérons deux cadres différents : le cas "hors-mémoire" (out-of-core) où le but est de réduire le nombre d’accès aux facteurs, qui sont stockés sur disque, et le cas "en mémoire" (in-core) où le but est de réduire le nombre d’opérations. Finalement, nous montrons comment améliorer le parallélisme. Dans la seconde partie, nous nous intéressons à la factorisation multifrontale parallèle. Nous montrons tout d’abord que contrôler la mémoire active spécifique à la méthode multifrontale est crucial, et que les technique de "répartition" (mapping) classiques ne peuvent fournir une bonne scalabilité mémoire : le coût mémoire de la factorisation augmente fortement avec le nombre de processeurs. Nous proposons une classe d’algorithmes de répartition et d’ordonnancement "conscients de la mémoire" (memory-aware) qui cherchent à maximiser la performance tout en respectant une contrainte mémoire fournie par l’utilisateur. Ces techniques ont révélé des problèmes de performances dans certains des noyaux parallèles denses utilisés à chaque étape de la factorisation, et nous avons proposé plusieurs améliorations algorithmiques. Les idées présentées tout au long de cette étude ont été implantées dans le solveur MUMPS (Solveur MUltifrontal Massivement Parallèle) et expérimentées sur des matrices de grande taille (plusieurs dizaines de millions d’inconnues) et sur des machines massivement parallèles (jusqu’à quelques milliers de coeurs). Elles ont permis d’améliorer les performances et la robustesse du code et seront disponibles dans une prochaine version. Certaines des idées présentées dans la première partie ont également été implantées dans le solveur PDSLin (solveur linéaire hybride basé sur une méthode de complément de Schur). ABSTRACT : We consider the solution of very large sparse systems of linear equations on parallel architectures. In this context, memory is often a bottleneck that prevents or limits the use of direct solvers, especially those based on the multifrontal method. This work focuses on memory and performance issues of the two memory and computationally intensive phases of direct methods, that is, the numerical factorization and the solution phase. In the first part we consider the solution phase with sparse right-hand sides, and in the second part we consider the memory scalability of the multifrontal factorization. In the first part, we focus on the triangular solution phase with multiple sparse right-hand sides, that appear in numerous applications. We especially emphasize the computation of entries of the inverse, where both the right-hand sides and the solution are sparse. We first present several storage schemes that enable a significant compression of the solution space, both in a sequential and a parallel context. We then show that the way the right-hand sides are partitioned into blocks strongly influences the performance and we consider two different settings: the out-of-core case, where the aim is to reduce the number of accesses to the factors, that are stored on disk, and the in-core case, where the aim is to reduce the computational cost. Finally, we show how to enhance the parallel efficiency. In the second part, we consider the parallel multifrontal factorization. We show that controlling the active memory specific to the multifrontal method is critical, and that commonly used mapping techniques usually fail to do so: they cannot achieve a high memory scalability, i.e. they dramatically increase the amount of memory needed by the factorization when the number of processors increases. We propose a class of "memory-aware" mapping and scheduling algorithms that aim at maximizing performance while enforcing a user-given memory constraint and provide robust memory estimates before the factorization. These techniques have raised performance issues in the parallel dense kernels used at each step of the factorization, and we have proposed some algorithmic improvements. The ideas presented throughout this study have been implemented within the MUMPS (MUltifrontal Massively Parallel Solver) solver and experimented on large matrices (up to a few tens of millions unknowns) and massively parallel architectures (up to a few thousand cores). They have demonstrated to improve the performance and the robustness of the code, and will be available in a future release. Some of the ideas presented in the first part have also been implemented within the PDSLin (Parallel Domain decomposition Schur complement based Linear solver) solver.

Département ou laboratoire:Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
Directeur de thèse:Amestoy, Patrick et Buttari, Alfredo
Mots-clés:Matrices creuses – Méthodes directes de résolution de systèmes linéaires – Méthode multifrontale – Graphes et hypergraphes – Calcul haute performance – Calcul parallèle – Ordonnancement. KEYWORDS : Sparse matrices – Direct methods for linear systems – Multifrontal method – Graphs and hypergraphs – High-performance computing – Parallel computing – Scheduling
Sujets:Mathématiques appliquées
Informatique > Informatique et télécommunications
Déposé le:19 Février 2013

Administrateur seulement : modifier cet enregistrement


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication