[Home bibliotech]
Home > Les thèses en ligne de l'INP

Etude de la structure des flammes diphasiques dans les brûleurs aéronautiques

Hannebique, Gregory (2013) Etude de la structure des flammes diphasiques dans les brûleurs aéronautiques. (Analysis of two-phase-flow flame structure in aeronautical burners.)

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6.9 Mo

Abstract

La régulation des polluants a mené à la création de nouveaux systèmes de combustion. Le carburant étant stocké sous forme liquide, sa transformation jusqu’à sa combustion est complexe. La capacité de la Simulation aux grandes échelles à simuler des écoulements turbulents réactifs a été montrée sur des cas académiques comme sur des configurations industrielles, tout en prenant en compte les phénomènes multiphysiques intervenant dans ces configurations, mais les études sur la structure de flamme diphasique sont encore trop peu nombreuses. La présence de deux solveurs pour la simulation d’une phase liquide étant disponible dans le code AVBP, leur utilisation permet une comparaison et une compréhension des phénomènes en jeu combinant dispersion, évaporation, et combustion. La première partie de l’étude relate la validation du modèle d’injection FIM-UR. Ce modèle est capable de reconstruire les profils de vitesses et de granulométrie à l’injecteur sans avoir à simuler les phénomènes d’atomisation primaire et secondaire. Une validation en régime turbulent avait déjà été réalisée, et on propose ici de valider le modèle dans un cas laminaire. Des comparaisons entre simulations monodisperses et polydisperse et des expériences sont effectuées. La simulation monodisperse Lagrangienne donne une bonne structure globale mais la simulation polydisperse Lagrangienne permet de retrouver le comportement au centre du cône avec la présence des petites gouttes et à la périphérie du cône par la présence des grosses gouttes. De plus, des améliorations sont apportées au modèle pour le formalisme Eulérien et montrent de bons résultats. La partie suivante s’intéresse à caractériser un spray polydisperse par une distribution monodisperse. En effet, au cas où une approche polydisperse n’est pas possible, le choix du diamètre moyen à prendre pour une simulation monodisperse est délicat. On propose donc d’analyser le comportement d’un spray polydisperse en le comparant à ceux de sprays monodisperses. Deux configurations académiques sont choisies : des cas de Turbulence Homogène Isotrope chargée en particules pour étudier la dynamique, et des calculs d’évaporation 0D. Trois paramètres sont étudiés pour la dynamique : la concentration préférentielle (ou ségrégation), la traînée moyenne et la traînée réduite moyenne. Cette dernière et la ségrégation de la distribution polydisperse semblent affectées par les tailles de goutte les plus faibles, et la concentration préférentielle apparait alors comme la moyenne des ségrégations des classes qui la composent pondérées par l’inverse du nombre de Stokes associé à chacune de ces classes. La traînée moyenne de la simulation polydisperse possède un comportement proche des diamètres moyens D10 et D20. Ces analyses nous poussent donc à choisir le D10 pour caractériser la dynamique d’un spray polydisperse. Les calculs d’évaporation 0D ne permettent pas dans un premier temps de caractériser efficacement la masse évaporée d’un spray polydisperse par celle d’un spray monodisperse équivalent, mais la définition de nouveaux diamètres issus de la littérature des lits fluidisés comme le D50% le permet, ce qui le place autour du D32. On propose donc de caractériser l’évaporation d’un spray polydisperse par ce diamètre. Enfin, la dernière partie étudie la structure de flamme diphasique dans la chambre MERCATO, à l’aide du formalisme Lagrangien, monodisperse et polydisperse, mais aussi en utilisant le formalisme Eulérien. La validation du modèle FIM-UR du premier chapitre et ses améliorations sont utilisées pour représenter les conditions d’injection liquide. En plus d’un calcul polydisperse, deux simulations monodisperses Lagrangiennes sont réalisées en prenant les diamètres moyens D10 et D32, suite à la partie précédente. Des comparaisons qualitatives et des validations sont réalisées, en comparant des profils de vitesses gazeuses axiale et fluctuante et vitesse axiale liquide issus de l’expérience. De bons résultats sont trouvés et le diamètre D32 semble plus proche des profils de la distribution polydisperse. Une comparaison de la flamme moyenne avec transformée d’Abel issue de l’expérience montrent des caractéristiques similaires : la flamme a une forme en M, accrochée par des zones de recirculation en sortie de swirler et par un point d’ancrage au niveau de la zone de recirculation centrale pour les trois simulations. Enfin, l’impact de la taille des gouttes est étudié. Même si quelques grosses gouttes de la distribution polydisperse se retrouvent dans les gaz brûlés au vu de leurs temps particulaire et temps d’évaporation plus grands, les structures de flamme diphasique restent similaires. Une combinaison entre des flammes de prémélange et des poches de carburant qui brûlent en diffusion est observée. La distribution de température en fonction de la fraction de mélange présente des similarités pour les différentes simulations puisqu’elle est encadrée par des droites de même pente. Là aussi, le diamètre D32 caractérise mieux la structure de flamme de la distribution polydisperse. Ce constat permet de réaliser les premiers calculs Eulériens en utilisant ce diamètre. L’étude met en évidence un scénario définissant l’allumage transitoire, réalisé par une méthode grossière, et pointe les différences entre les formalismes en termes de convergence statistique. L’étude de la structure de flamme diphasique présente des différences concernant le mélange et la combustion, même si les mêmes régimes de combustion sont présents. Des pistes comme la fermeture du terme d’évaporation en LES, ou la méthodologie d’allumage sont envisagées pour expliquer ces différences. ABSTRACT : Regulations on pollutants have led to the creation of new combustion systems. Giving that fuel is stored in a liquid form, its evolution until combustion is complex. The ability of Large Eddy Simulation has been demonstrated on academic cases, as well as on industrial configurations, by taking into account the multi-physics phenomena, but there is a lack of studies about two-phase flow flame structures. Two solvers for the simulation of two-phase flows are available in the AVBP code, hence both simulations are performed to compare and increase understanding of the phenomena involved such as dispersion, evaporation and combustion. The first part of the study focuses on the validation of the FIM-UR injection model. This model is able to build velocity and droplet profiles at the injector, without simulating primary and secondary break up. A validation in a turbulent case has already been done, and this study validates the model in a laminar case. Comparisons between monodisperse and polydisperse simulations, and experiments are performed. The monodisperse Lagrangian simulation shows good results but the polydisperse simulation is able to represent profiles in the center of the cone by small droplets and at the peripheral part of the cone, by big ones. Moreover, improvements in the Eulerian model exhibit good results. The next section tries to evaluate the impact of polydispersion. Indeed, when a polydisperse approach is not available, choosing the mean diameter can be tricky. A comparison between the behavior of polydisperse spray and monodisperse sprays ones is realised. Two academic cases are studied: Homogeneous Isotropic Turbulence with particles to analyze the dynamics, and 0D evaporation cases. For the dynamics, preferential concentration, mean drag and reduced mean drag are studied. The latter and preferential concentration are affected by small droplets, and the preferential concentration of a polydisperse spray is equivalent to the average of preferential concentration of classes, extracted from the polydisperse distribution, weighted by the inverse of the Stokes number of each class. The mean drag behaves like the D10 and D20 mean drags. This analysis allows us to choose the D10 to characterize a polydisperse distribution for the dynamics. Zero-D evaporation simulations cannot characterize the polydisperse spray evaporated mass by the evaporated mass of monodisperses sprays. New definitions of diameters from fluidized bed literature enable the use of D50%, which is close to D32. We propose to use this diameter to characterize the evaporation of a polydisperse spray. Finally, the last section studies the structure of two-phase flames in the MERCATO bench, using the Lagrangian formalism, monodisperse and polydisperse but also using the Eulerian formalism. The validation of FIM-UR model and improvements from the first section are used to represent liquid injection conditions. A polydisperse simulation is realized and two monodisperse simulations are computed using mean diameters D10 and D32, thanks to the previous section. Qualitative comparisons and validations are realized, comparing gaseous velocity profiles and liquid velocity profiles. Good agreements are found and the mean diameter D32 seems to be close to the polydisperse spray. A comparison between mean flames is done with an Abel transform of the flame from the experiments. The flame has an "M shape", anchored by small recirculation zones out of the swirler, and by a point at the tip of the central recirculation zone. Then, the impact of droplet distributions is analyzed. Even if few bigger droplets from the polydisperse distribution are convected in the hot gases due to bigger particular time and evaporation time, two-phase flow flame structures are equivalent. Different combustion regimes appeared with premixed flames and pockets of fuel burning in the hot gases. The scatterplot of the temperature versus the mixture fraction present some similarities for all the simulations and is framed by same slope lines. Moreover, the mean diameter D32 characterizes the polydisperse spray in terms of flame structure. This result enables the first Eulerian simulations and focuses on the impact of the unphysical transient ignition. Moreover, discrepancies between Lagrangian and Eulerian formalisms are presented concerning statistical convergence. The two-phase flow flame structure indicates discrepancies regarding mixing and combustion, even if premixed and non premixed combustion regimes are still present. Such differences may be explained by the LES evaporation closure term or by the ignition procedure.

Department or laboratory:Centre Européen de Recherche et Formation Avancées en Calcul Scientifique - CERFACS (Toulouse, France)
Directeur de thèse:Cuenot, Bénédicte and Riber, Eleonore
Uncontrolled Keywords:Simulations aux grandes échelles – Injection diphasique – Turbulence homogène isotrope – Structure de flamme - Euler/Euler - Euler/Lagrange. KEYWORDS : Large eddy simulations - Two-phase flow injection – Isotropic homogeneous turbulence – Flame structure - Euler/Euler - Euler/Lagrange
Subjects:Hydraulics > Fluid dynamics
Deposited On:01 July 2013

Archive Staff Only: edit this record


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication