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Executive Summary (Resume)

Since the last few decades, Information and Communication Technology (ICT) systems are
evolving rapidly and they are becoming more and more popular and omnipresent. This trend
also exist in aviation domain. Now a days, all modern aircraft have complex suit of on-board
electronic devices used for various purposes commonly referred to as Avionics Systems. Avionics
systems of an aircraft are used in a wide variety of different applications such as flight control,
instrumentation, navigation, communication etc. These avionics systems need to communicate
between themselves and exchange data, hence building "Avionics networks". Over the years,
demand for data exchange has risen rapidly and avionics networks have evolved from dedicated
links to shared buses to switched networks such as Avionics Full-Duplex Switched Ethernet
(AFDX). AFDX is a data network for safety critical applications that utilizes dedicated band-
width while providing deterministic Quality of Service (QoS). AFDX is based on IEEE 802.3
Ethernet technology and utilizes commercial off-the-shelf (COTS) components. It is described
specifically by Part 7 of the ARINC 664 Specification, as a special case of a profiled version of an
IEEE 802.3 network per parts 1 & 2, which defines how Commercial Off-the-Shelf networking
components will be used for future generation Aircraft Data Networks (ADN). The six pri-
mary aspects of AFDX include full duplex, redundancy, deterministic, high speed performance,
switched and profiled network. Like any other communication network being used on-board an
aircraft, it is very important to know the temporal aspects of data flow on AFDX network, such
as communication delay from the source to the destination. These end to end communication
delays are important to determine because they are used to certify avionics systems of the air-
craft. In this context, the main objective of this thesis is to provide methodologies of finding
exact worst case communication delays of AFDX network.

To achieve this goal, different tools and approaches have been analyzed and compared with
existing techniques. New approaches and algorithm were also developed during the research
work of this thesis. At present two main techniques are being used for end to end delay analysis
of AFDX network. These are Network Calculus and Trajectory approach. Both of these are
pessimistic in their results and give us a sure upper bound on the end to end communication
delays instead of exact values. Network Calculus uses Min Plus algebra for its calculations.
The pessimism in results have been reduced by using different techniques such as "grouping".
Trajectory approach uses concept of "busy period" to calculate its bounds for end to end commu-
nication delays. In some cases Network Calculus has better results than the Trajectory approach
while in other cases Trajectory approach gives better results. On average, results of Trajectory
approach are tighter than Network Calculus approach and the margin varies depending upon
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the VL path.

In order to evaluate exact end to end communication delays, Model checking has been used
in the context of AFDX network. Before this research work, it was applied to AFDX network as
a proof of concept on a simple configuration. During this work, we have explored Model checking
for end to end communication delays of AFDX network in depth, with models reflecting the
real configuration parameters, such as asynchronous behavior, packet sizes and BAG values.
In this context, existing well established real time model checking tools were explored, such
as UPPAAL and NuSMV. UPPAAL suits better for the end to end communication delays in
AFDX network as compared to NuSMV because NuSMV can only handle pure discrete models.
On the other hand UPPAAL does not have a symbolic representation for the discrete part of the
state space and hence it limits the size of models that can be evaluated in reasonable time and
computation resources. Still, we were able to evaluate AFDX network of considerably larger
sizes than existing approach. We are able to find end to end communication delays of AFDX
network with upto 32 VLs.

In order to overcome limitations of Model Checking approach, the work was done in the
direction of exhaustive simulation using in house developed algorithms and tools based on these
algorithms. The main reason for using this approach was to develop a tool from scratch which
is specifically suited for the task of finding exact end to end communication delay of AFDX
networks. In order to reduce state space for this exhaustive simulation approach, properties of
the AFDX network were exploited and different algorithms were developed which ensure that
we only consider cases which can be candidate for worst case end to end communication delays.
The end result is encouraging and we were able to analyze large AFDX network configurations.
We were also able to analyze part of a real life industrial configuration of the AFDX network
with approximately 1000 VLs and 6400 paths. For more than 60% of these paths we were able
to find exact end to end communication delays while for the rest we were able to find end to
end communication delays which are close to worst case communication delays.

The results obtained from the tool developed during this research were compared with
existing approaches. With exact end to end communication delays calculated by this tool, we
can find exact pessimism in Network Calculus and Trajectory approaches. On average, Network
Calculus is 13% pessimistic in its calculations while Trajectory approach is about 6% pessimistic
in its calculations.

Keywords: AFDX Network, Model Checking, Worst Case Communication Delay, Exhaus-
tive Simulation
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In this era of modern science and technology, we rely heavily on the correct functioning of
many Information and Communication Technology (ICT) systems. This trend is on the rise and
while these systems are becoming more and more complex, at the same time they are massively
encroaching on our daily life via the Internet and all kinds of embedded systems such as smart
cards, hand-held computers, mobile phones, and high-end television sets. It is estimated that
we are confronted with about 25 ICT devices on a daily basis [Baier 2008]. Many services
such as electronic banking, on-line shopping (e-commerce) and smart card transactions are part
of our routine life. The Internet alone accounts for about 1012 million US dollars cash flow.
Modern transportation systems such as cars, trains and airplanes spend about one fourth of their
production costs in ICT systems. ICT systems have become universal and omnipresent. They
play vital role in control of the stock exchange market, they are the heart of telephone switches,
they constitute Internet technology, and they are crucial for several kinds of medical systems,
transportation systems and manufacturing systems. Our heavy reliance on these embedded
systems make them very important and their reliable and correct operation has become a prime
priority. Not only we want a good performance in terms like response times and processing
capacity, but also the absence of annoying errors is one of the major quality demands.

The correct behavior of ICT systems is vital not only for money and comfort but in many
cases, also for our lives. We don’t like when our phones does not work properly or when our
electronic gadgets reacts unexpectedly and wrongly to our issued commands. These software
and hardware errors do not threaten our lives, but may have substantial financial consequences
for the manufacturer. Examples are known where incorrect systems have caused valuable money
loss to companies. The bug in Intel’s Pentium II floating-point division unit in the early nineties
caused a loss of about 475 million US dollars to replace faulty processors, and severely damaged
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Figure 1.1 – June 4, 1996; The Ariane-5 crashed 36 seconds after the launch due to a conversion
of a 64-bit floating point into a 16-bit integer value.

Intel’s reputation as a reliable chip manufacturer. The software error in a baggage handling
system postponed the opening of Denver’s airport for 9 months, at a loss of 1.1 million US
dollar per day [Baier 2008].

Errors can be catastrophic too. Notorious examples in the past are the fatal defects in the
control software of the Ariane-5 missile (figure 1.1), the Mars Pathfinder, and the airplanes
of the Airbus family. Similarly software are also used for the process control of safety-critical
systems such as chemical plants, nuclear power plants, traffic control and alert systems, and
storm surge barriers. Consequently, bugs in such software can have disastrous impacts. For
example, a software flaw in the control part of the radiation therapy machine “Therac-25" caused
the death of six cancer patients between 1985 and 1987 as they were exposed to an overdose of
radiation [Baier 2008].

All these examples remind us that it is very pertinent for any system to verify its correct
intended operation and behaviour, specially for those which involve human lives. In this thesis,
we strive for verification of an important avionics communication network known as Avionics
Full-Duplex Switched Ethernet (AFDX). We will determine the exact worst case end to end
communication delays of AFDX network. The context of this problem and brief background is
presented in next section.

1.1 The Context

All modern aircraft have complex suit of on-board electronic devices used for various purposes,
commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide
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variety of different applications such as flight control, instrumentation, navigation, communica-
tion etc. These avionics systems need to communicate between themselves and exchange data,
hence building "Avionics networks". Over the years, demand for data exchange has risen rapidly
and avionics networks have evolved from dedicated links to shared buses and from shared buses
to switched networks such as AFDX. Avionics Full-Duplex Switched Ethernet (AFDX) [AR-
INC 664 2005] is an avionics data network for safety critical applications and hence requires a
very strict verification of its correct functioning. One important aspect of this verification is
the maximum end to end communication delay for different devices connected to the network.

In any communication network, there is an end-to-end communication delay which occurs
from the source generating a given message to the destinations receiving that message. For
each message, this delay is composed of different parts: the transmission delays on links, the
switching delays, the waiting times in output buffers. Knowing these delays is crucial for the
overall system safety and reliability. However, finding the exact worst case delay for a given
message is still an open problem, since every possible scenario has to be considered, leading to
an intractable computation on any industrial configuration. Typically, this situation occurs in
the context of avionics. Existing approaches for the computation of an exact worst-case delay
in the context of the AFDX are based on model checking [Adnan 2010b, Charara 2006a] using
Timed Automata [Alur 1994]. They cannot cope with configuration with more than ten VLs.

Many work has been devoted to the estimation of the worst-case delay for each message. By
using techniques such as simulation and testing, it is possible to observe the network under study
over long periods of times, thus considering a subset of all possible scenarios. Such an approach
has been proposed in [Scharbarg 2009] for avionics networks. It provides an interval for the
delay for each message. However, the delay for a message can be out of the obtained interval,
since the approach does not consider all the possible scenarios. Consequently, simulation and
testing do not provide us with exact worst case delays.

Analytical methods such as network calculus [Charara 2006a, Cruz 1991a] , [Cruz 1991b,
Fraboul 2002a, Le Boudec 2001, Li 2010] and trajectory approach [Bauer 2009, Bauer 2010,
Martin 2006a] are used to compute an upper bound on the maximum delay for each flow. They
guarantee that the delay can never be more than the calculated upper bound. These computed
bounds are used for network certification but are pessimistic and cause under utilization of the
network. The exact worst case delay for each flow is somewhere between the maximum observed
delay and the calculated upper bounds, as shown in figure 1.2. In [Bauer 2010], authors have
done analysis of this pessimism by the computation of an under approximation of this delay
and comparing it with the results of sure upper bounds calculated by Network Calculus and
Trajectory approaches. In figure 1.2, the difference between exact maximum delay and under
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Figure 1.2 – AFDX network delays analysis.

approximation is the measure of optimism in algorithm used for under approximation while
the difference between exact maximum delay and upper bound is the measure of pessimism
in Network Calculus and Trajectory approaches used to calculate this bound. Without the
knowledge of exact maximum delay, the difference between under approximation and upper
bound is sum of optimism and pessimism between corresponding techniques. This gives us an
estimation of pessimism in Network Calculus and Trajectory approaches.

Our aim, in this thesis, is to find exact worst case end to end communication delays. For this
purpose we have explored existing tools and methodologies as well as developed new algorithms
and tools where existing methods were not suitable for this task. The overview of this work is
presented in the contribution section.

1.2 Contribution

The main objective of this thesis is to find exact worst case end to end communication delays of
an AFDX network. For AFDX network, end to end communication delays can be approximated
by using simulations, or they can be upper bounded by using analytical techniques such as
Network Calculus or Trajectory approach. For computation of exact worst case delays, at
present, we have only model checking approach but the model checking approach is limited
only to small sized, proof of concept type networks and cannot analyze real life large sized
industrial networks. These methods will be discussed in more detail in Chapter 3. Then, the
problem is how to find exact worst case communication delays of large AFDX networks. Or, in
other words, how can we improve models so that we are able to handle large networks. Also,
another objective is to add local scheduling at the end systems in the computations which
existing model checking approach doesn’t incorporate.



1.2. Contribution 5

Starting with the first model checking approach in [Charara 2006b], this approach can be
improved: instead of analyzing the whole AFDX network simultaneously, only a part of the
network can be considered and "divide and conquer" method can be used. This have been done
in [Adnan 2010a] and presented in [Adnan 2010b, Adnan 2010c].The idea is to consider one
output port at a time and compute worst case delay at the port under study. This approach is
successful in handling larger networks than the existing approach but it does not compute exact
worst case delays for every scenario. Due to the port by port analysis approach, it is optimistic
in certain cases where worst case delay on one port does not lead to overall end to end worst
case delay. This is discussed in further detail in Chapter 3.

In this PhD Thesis, we propose to improve the Timed Automata models in two directions.
First, scheduling of VLs at a local end system using offsets and asynchronous behaviour among
all end systems have been added into the model, making the model of the AFDX network more
realistic. Secondly, to make models efficient in resource (memory + computation) usage and to
reduce search space, in order to cope with larger AFDX networks. In this context, we exploit
AFDX network properties to reduce search space by considering only those cases which can be
candidate for the worst case end to end delay. A first implementation considering this search
space reduction has been presented in [Adnan 2011a, Adnan 2012]. A general purpose model
checker, UPPAAL, is used for the developed timed automata models.

The models are detailed enough to capture periodic and sporadic flows with any BAG values.
They also support local scheduling at each end system by using offsets. AFDX network with
upto 32 VLs can be handled with this approach. This work is presented in more detail in
Chapter 4.

At this point, we were still not able to compute worst case end to end delays of a real life
industrial scale AFDX network by model checking. This is due to inherent exponential increase
of state space in any model checking approach. But we were convinced that use of a general
purpose model checker is also hampering our efforts to analyze larger networks. Therefore, we
decided to use an approach which is more suited to AFDX network analysis. For this purpose,
we started to develop a tool from scratch, which will allow us to exhaustively check all the cases
which can be candidate for the worst case end to end delays in the AFDX network. This tool
uses the same methodology and algorithms of state space reduction as used in Timed Automata
based modeling approach discussed before. This work was presented in [Adnan 2011b]. The
results are much better as compared to Timed Automata approach using UPPAAL software.
We are able to compute end to end communication delays of a network which is twice the size
of what Timed Automata based approach can handle. This approach is discussed in detail in
Chapter 5.
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We continued to pursue our main goal to analyze an industrial size AFDX network. With
home made tool, we are at liberty to modify and change the software as required. We developed
some algorithms and exploited more properties of AFDX network in order to reduce the search
space to an extent where we were able to analyze industrial configuration of the AFDX network.
We used this tool to study the end to end communication delays of a real life AFDX network,
used on Airbus A380 aircraft. We are now able to compute end to end communication delays of
an industrial sized network with about 1000 VLs having 6412 individual paths and more than
100 end systems. We are able to analyze all the VLs of this industrial AFDX network but not
all the paths. We can analyze more than 60% paths. The reduction of state space is discussed
in Chapter 5.5 and the case study of Airbus A380 network is presented in Chapter 6.

Our contribution in this thesis is to be able to find exact worst case end to end communication
delays for large industrial size AFDX network and compare it with existing results to evaluate
real pessimism of corresponding approaches.
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In this chapter we will discuss about system verification and different methodologies available
for this purpose. We will also talk about AFDX network in detail; how it works and what are
the main building blocks.

2.1 System Verification

The complexity of ICT systems has increased with the advancement in technology. They have
evolved from standalone systems to distributed systems; connecting and interacting with several
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Figure 2.1 – Schematic view of system verification process.

other components and systems. This makes them more prone to errors as the probability and
number of defects increases exponentially with the number of interacting system components.
Increased complexity also makes it difficult for developers to debug and check systems for
potential errors. In particular, phenomena such as concurrency and non-determinism that are
central to modeling interacting systems turn out to be very hard to handle with standard
techniques. Hence a lot of research is being carried out and efforts are being put in order to
check Hardware and Software for correctness as well as compliance to it’s specifications. These
efforts are generally referred to as “System Verification" and is an active topic of research.

System verification techniques are integral part of all ICT system developments. Currently,
the emphases of scientific community is on developing more reliable and accurate system ver-
ification techniques. In simple words, system verification is used to establish that the design
or product under consideration satisfies certain properties. The properties to be validated are
mostly obtained from the system’s specification and can be quite elementary, e.g., to verify that
the system should never be able to reach a situation in which no progress can be made (a dead-
lock scenario). The specifications describe what the system has to do and what not, and thus
constitutes the basis for any verification activity. A defect is found once the system does not
fulfill one of the specification’s properties. The system is considered to be “correct" whenever
it satisfies all properties obtained from its specification. So correctness is always relative to a
specification, and is not an absolute property of a system. A schematic view of verification
process is depicted in figure 2.1.

Today’s systems are very complex in it’s nature and mostly comprise of interconnected sub
systems. System verification is a vast field and can be further subdivided into major domains
such as:
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• Software verification

• Hardware verification

• Behavioral verification

There are different methodologies being used for system verification. These methodologies can
be specific to one domain or applicable to more than one domain. These include:

• Measurements

• Tests

• Simulations

• Model Checking

In the context of this thesis, the verification of worst case end to end communication delays
falls under behavioral verification domain. For this verification, all of the above mentioned
methodologies can be used with varying degree of confidence or surety. Measurements are the
quantitative indicators of the properties and performance criteria of the system under study.
They can be very useful during the development phase or for troubleshooting. Tests are integral
part of any system development. A system undergoes many tests from its inception to final
product. At each state different tests are performed. Results of these tests dictates the progress
to next level of development. Simulation is replication of a real world process or system over
time. This replication should be as close to real world system as possible for better results.
Simulations are used to investigate behaviour of the system and to validate proper functionality
without using the actual system. Tests and simulations are quite similar in nature except that in
tests, actual system is used. All of the above mentioned methodologies i.e measurements, tests
and simulations only provide data at a particular instance under specific conditions, which means
it does not verify system for all possible situations or scenarios. Therefore these methodologies
can discover many anomalies in the system understudy but they can not verify that all the
possible situations and scenarios have been covered. There is always a chance that a rare
anomaly or event has not been tested. For covering all possible cases or scenarios, model checking
is used. Model checking, for a given model of a system, exhaustively and automatically checks
whether this model meets a given specification. Simulation can also check all possible cases or
scenarios, and such simulation is referred to as Exhaustive Simulation. So, for 100% coverage
of all possible scenarios, model checking and exhaustive simulation are the two methodologies
which can be used. In the context of this thesis, for exact worst case end to end communication
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delays, we will use both model checking and exhaustive simulation. These methodologies will
be discussed in more detail in the next sections.

2.1.1 Software Verification

Software verification is a process of checking system’s software for it’s compliance with specifi-
cations and expected requirements. Peer reviewing and testing are the major “software verifi-
cation" techniques used in practice. A “peer review" refers to a software inspection carried out
by a team of software engineers that preferably has not been involved in the development of
software under review. The code of software is not executed but analyzed statically. Empirical
studies indicate that peer review provides an effective technique that catches around 60% of
the errors [Boehm 2001]. Despite its almost complete manual nature, peer review is thus a
rather useful technique. Due to its static nature, experience has shown that subtle errors such
as concurrency and algorithm defects are hard to catch using peer review.

“Software testing" is a significant part of any software engineering project [Whittaker 2000].
As opposed to peer review, which analyzes code statically without executing it, testing is a
dynamic technique that actually runs the software. Testing takes the piece of software under
consideration and provides its compiled code with inputs, called tests. Correctness is thus deter-
mined by forcing the software to traverse a set of execution paths, sequences of code statements
representing a run of the software. Based on the observations during test execution, the actual
output of the software is compared to the output as documented in the system specification.
Although test generation and test execution can partly be automated, the comparison is usu-
ally performed by human beings. The main advantage of testing is that it can be applied to
all sorts of software, ranging from application software (e.g., e-business software) to compilers
and operating systems. As exhaustive testing of all execution paths is practically in-feasible;
in practice only a small subset of these paths is treated. Testing can thus never be complete.
That is to say, testing can only show the presence of errors, not their absence.

2.1.2 Hardware Verification

“Hardware Verification" is vital for preventing errors in hardware design. Hardware is subject
to high fabrication costs; fixing defects after delivery to customers is difficult, and quality
expectations are high. Whereas software defects can be repaired by providing users with patches
or updates, hardware bug fixes after delivery to customers are very difficult and mostly require
re-fabrication and redistribution. This has immense economic consequences. As mentioned
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earlier, the replacement of the faulty Pentium II processors caused Intel a loss of about $ 475
million. It is not surprising that chip manufacturers invest a lot in getting their designs right.
Hardware verification is a well-established part of the design process. Emulation, simulation,
and structural analysis are the major techniques used in hardware verification.

“Structural analysis" comprises several specific techniques such as synthesis, timing analysis,
and equivalence checking. “Emulation" is a kind of testing. A re-configurable generic hardware
system (the emulator) is configured such that it behaves like the circuit under consideration
and is then extensively tested. As with software testing, emulation amounts to providing a set
of stimuli to the circuit and comparing the generated output with the expected output as laid
down in the chip specification. To fully test the circuit, all possible input combinations in every
possible system state should be examined. This is impractical and the number of tests needs to
be reduced significantly, yielding potential undiscovered errors. With “simulation", a model of
the circuit at hand is constructed and simulated. Models are typically provided using hardware
description languages such as V erilog or V HDL that are both standardized by IEEE. Based
on stimuli, execution paths of the chip model are examined using a simulator. These stimuli
may be provided by a user, or by automated means such as a random generator. A mismatch
between the simulator’s output and the output described in the specification determines the
presence of errors. Simulation is like testing, but is applied to models. It suffers from the same
limitations, though: the number of scenarios to be checked in a model to get full confidence
goes beyond any reasonable subset of scenarios that can be examined in practice.

2.1.3 Behavioral Verification

Behavior of a system refers to it’s expected outputs for a given set of assumed inputs. In simple
words, Behavioral Verification is the process of verification of system’s “behavior" under given
conditions. System’s behavior is combined effect of its software and hardware functioning. Even
though a system is verified separately for it’s software and hardware, it is equally important
to verify the system at more abstract and conceptual levels. For example, communication
protocols, compliance of specified rules, and interaction among subsystems must be verified
before starting development of hardware and software for each individual subsystem. Behavioral
verification requires a “model" of the system. This model is a formal way of describing the
system over which we can use certain queries and properties to verify it’s behavior. Different
tools incorporating various techniques exist which help in modeling a system for it’s behavioral
verification such as TINA, NuSMV, SPIN, UPPAAL etc. A comprehensive list of such tools
can be consulted in Appendix A.
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It must be noted that none of the software and hardware verification techniques described
earlier gives us the 100% confidence about system correctness due to the same limitation of
unreasonably large set of possible scenarios. If we need absolute surety of our design, then we
must find a way to test all possible scenarios and that’s where model checking helps us. Model
checking approach searches all possible scenario exhaustively to prove correctness of the model
under test. An important aspect of model checking is that it’s as good as the model itself, i.e we
must ensure that the model correctly represents the system before we start the model checking.
In the following sections, basic theory of model checking is presented. The details of available
model checking software, called “model checkers", and their application to AFDX network is
described in Chapter 3.2 and Chapter 4 respectively. Further discussion about model checking
is presented in Appendix A.

2.2 Model Checking

In general more time and effort are spent on verification than on construction in software and
hardware design of complex systems. Naturally, many techniques are sought to reduce and
ease the verification efforts while increasing their coverage. One such technique is the use of
“Formal methods" which is known to offer a large potential to obtain an early integration of
verification in the design process, to provide more effective verification techniques, and to reduce
the verification time.

2.2.1 Formal Methods

To put it in a nutshell, formal methods can be considered as“the applied mathematics for model-
ing and analyzing ICT systems". Their aim is to establish system correctness with mathematical
rigor. Their great potential has led to an increasing use by engineers of formal methods for the
verification of complex software and hardware systems. Besides, formal methods are one of the
“highly recommended" verification techniques for software development of safety critical systems
according to, e.g., the best practices standard of the IEC (International Electro-technical Com-
mission) and standards of the ESA (European Space Agency). The resulting report [Baier 2008]
of an investigation by the FAA (Federal Aviation Authority) and NASA (National Aeronautics
and Space Administration) about the use of formal methods concludes that “Formal methods
should be part of the education of every computer scientist and software engineer, just as the
appropriate branch of applied maths is a necessary part of the education of all other engineers."
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During the last two decades, research in formal methods has led to the development of
some very promising verification techniques that facilitate the early detection of defects. These
techniques are accompanied by powerful software tools that can be used to automate various
verification steps. Investigations have shown that formal verification procedures would have
revealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder, Intel’s Pentium II
processor, and the Therac-25 therapy radiation machine.

2.2.2 Model-based Verification

Model-based verification techniques are based on models describing the possible system behavior
in a mathematically precise and unambiguous manner. It turns out that prior to any form of
verification, the accurate modeling of systems often leads to the discovery of incompleteness,
ambiguities, and inconsistencies in informal system specifications. Such problems are usually
only discovered at a much later stage of the design. The system models are accompanied by
algorithms that systematically explore all states of the system model. This provides the basis for
a whole range of verification techniques ranging from an exhaustive exploration (model checking)
to experiments with a restrictive set of scenarios in the model (simulation), or in reality (testing).
Due to unremitting improvements of underlying algorithms and data structures, together with
the availability of faster computers and larger computer memories, model-based techniques that
a decade ago only worked for very simple examples are nowadays applicable to realistic designs.
As the starting point of these techniques is a model of the system under consideration, we have
as a given fact that any verification using model-based techniques is only as good as the model
of the system.

Model checking is a verification technique that explores all possible system states, commonly
known as state-space, in a brute-force manner. Similar to a computer chess program that checks
possible moves, a model checker, the software tool that performs the model checking, examines
all possible system scenarios in a systematic manner. In this way, it can be shown that a given
system model truly satisfies a certain property. It is a real challenge to examine the largest
possible state spaces that can be treated with current means, i.e., processors and memories.
State-of- the-art model checkers can handle state spaces of about 108 to 109 states with explicit
state-space enumeration. Using clever algorithms and tailored data structures, larger state
spaces (1020 up to even 10476 states) can be handled for specific problems [Straunstrup 2000].
Even the subtle errors that remain undiscovered using emulation, testing and simulation can
potentially be revealed using model checking.

Typical properties that can be checked using model checking are of a qualitative nature: Is
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Figure 2.2 – Schematic view of Model Checking process.

the generated result OK?, Can the system reach a deadlock situation? e.g., when two concurrent
programs are waiting for each other and thus halting the entire system? But also timing
properties can be checked: Can a deadlock occur within 1 hour after a system reset?, or, Is a
response always received within 8 minutes? Model checking requires a precise and unambiguous
statement of the properties to be examined. As with making an accurate system model, this
step often leads to the discovery of several ambiguities and inconsistencies in the informal
documentation. For instance, the formalization of all system properties for a subset of the
ISDN user part protocol revealed that 55% (!) of the original, informal system requirements
were inconsistent [Holzmann. 1994]. The system model is usually automatically generated from
a model description that is specified in some appropriate dialect of programming languages like
C or Java or hardware description languages such as Verilog or VHDL. Note that the property
specification prescribes what the system should do, and what it should not do, whereas the
model description addresses how the system behaves. The model checker examines all relevant
system states to check whether they satisfy the desired property. If a state is encountered that
violates the property under consideration, the model checker provides a counterexample that
indicates how the model could reach the undesired state. The counterexample describes an
execution path that leads from the initial system state to a state that violates the property
being verified. With the help of a simulator, the user can replay the violating scenario, in this
way obtaining useful debugging information, and adapt the model (or the property) accordingly
(see Figure 2.2).
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2.2.3 History of Model Checking

Model checking originates from the independent work of two pairs in the early eighties: Clarke
and Emerson [Clarke 1981] and Queille and Sifakis [Queille 1982]. The term model checking
was coined by Clarke and Emerson. The brute-force examination of the entire state space
in model checking can be considered as an extension of automated protocol validation tech-
niques by Hajek [Hajek 1978] and West [West 1978, West 1989]. While these earlier techniques
were restricted to checking the absence of deadlocks or livelocks, model checking allows for the
examination of broader classes of properties. Introductory papers on model checking can be
found in [Clarke 1996a, Clarke 2000, Clarke 1996b, Merz 2001, Wolper 1995]. The limitations
of model checking were discussed by Apt and Kozen [Apt 1986]. More information on model
checking is available in the earlier books by Holzmann [Holzmann 1990], McMillan [McMil-
lan 1993], and Kurshan [Kurshan 1994] and the more recent works by Clarke, Grumberg, and
Peled [Clarke 1999], Huth and Ryan [Huth 1999], Schneider [Schneider 2004], and Bérard et
al. [Bérard 2001]. Automated analysis of designs, in particular verification by model checking,
has recently been described by Ruys and Brinksma in [Ruys 2003].

2.2.4 Application of Model Checking in Networks

Model checking has been used for verification of different systems in the past. In the do-
main of networks, it has been used to verify redundant media extension of Ethernet PowerLink
[Steve 2007]. It has also been used in networked automation systems [Ruel 2008] and in func-
tional analysis of real-time protocol in an networked control system [Fidge 2006]. For Integrated
Modular Avionics (IMA)[ARINC 653 1997] , the bounds on end to end functional delays have
been studied in [Lauer 2010]. All these applications of model checking are different than what
we do in this thesis. None of the above approaches find exact worst case communication delays
over the network. Most of these approaches use either an abstraction of the network with basic
functionality such as NetworkOK, NetworkCongested, OnTime, TooLate as in [Fidge 2006] or
they use upper bounds of network communication delays calculated by Network Calculus or
Trajectory approach as in [Lauer 2010].

2.2.5 Characteristics of Model Checking

Model Checking can be defined as “an automated technique that, given a finite-state model of
a system and a formal property, systematically checks whether this property holds for (a given
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state in) that model." The next section briefly explains the general process of model checking
followed by it’s advantages, limitations and role in system development cycle.

2.2.5.1 Model Checking Process

Model checking process can be divided in following different phases:

• Modeling phase:

– model the system under consideration using the model description language of the
model checker at hand;

– as a first sanity check and quick assessment of the model perform some simulations;

– formalize the property to be checked using the property specification language.

• Running phase: run the model checker to check the validity of the property in the system
model.

• Analysis phase:

– is property satisfied? If yes then check next property (if any);

– is property violated? If yes then system did not respect its specification. Therefore:

1. analyze generated counterexample by simulation;
2. refine the model, design, or property;
3. repeat the entire procedure.

– out of memory? If yes then try to revise the abstraction level of the model to reduce
its size and try again.

2.2.5.2 Strengths and Weaknesses of Model checking

Following are the main strengths of model checking approach:

• It is a general verification approach that is applicable to a wide range of applications such
as embedded systems, software engineering, and hardware design.

• It supports partial verification, i.e., properties can be checked individually, thus allowing
focus on the essential properties first. No complete requirement specification is needed.
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• It is not vulnerable to the likelihood that an error is exposed; this contrasts with testing
and simulation that are aimed at tracing the most probable defects.

• It provides diagnostic information in case a property is invalidated; this is very useful for
debugging purposes.

• It is a potential “push-button" technology; once the model has been developed, the use of
model checking tools requires neither a high degree of user interaction nor a high degree
of expertise.

• It enjoys a rapidly increasing interest by industry; several hardware companies have started
their in-house verification labs, job offers with required skills in model checking frequently
appear, and commercial model checkers have become available.

• It can be easily integrated in existing development cycles; its learning curve is not very
steep, and empirical studies indicate that it may lead to shorter development times.

• It has a sound and mathematical underpinning; it is based on theory of graph algorithms,
data structures, and logic.

Following are the weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data intensive
applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or reasoning
about abstract data types (which requires undecidable or semi-decidable logics), model
checking is in general not effectively computable.

• It verifies a system model, and not the actual system (product or prototype) itself; any
obtained result is thus as good as the system model. Complementary techniques, such as
testing, are needed to find fabrication faults (for hardware) or coding errors (for software).
This highly depends on the level of abstraction in the model of the system.

• It checks only stated requirements, i.e., there is no guarantee of completeness. The validity
of properties that are not checked cannot be judged.

• It suffers from the state-space explosion problem, i.e., the number of states needed to
model the system accurately may easily exceed the amount of available computer memory.
Despite the development of several very effective methods to combat this problem, models
of realistic systems may still be too large to fit in memory.
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• Its usage requires some expertise in finding appropriate abstractions to obtain smaller
system models and to state properties in the logical formalism used.

• It is not guaranteed to yield correct results: as with any tool, a model checker may contain
software defects.

• It does not allow checking generalizations: in general, checking systems with an arbitrary
number of components, or parameterized systems, cannot be treated. Model checking
can, however, suggest results for arbitrary parameters that may be verified using proof
assistants.

Model checking has great potential in system verification and removing rare to find bugs.
It can formally verify properties of the system, and it can be used to check correct behavior of
the system. Model checking is the choice when we want a complete verification of the system
which simulations can not provide. Model checking considers all possible cases, and hence we
can apply it to AFDX network in order to find exact end to end communication delays. We
will discuss the application of this technique to find exact end to end communication delays of
AFDX network [ARINC 664 2005] in coming sections (Chapter 3.2.1, Chapter 4), but first let’s
describe AFDX Network.

2.3 AFDX Network

All modern aircraft have complex suit of on-board electronic devices used for various purposes,
commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide
variety of different applications such as flight control, instrumentation, navigation, communi-
cation etc. These avionics systems need to communicate between themselves and exchange
data, hence building "Avionics networks". Over the years, demand for data exchange has risen
rapidly and avionics networks have evolved from dedicated links to shared buses to switched
networks such as AFDX. Avionics Full-Duplex Switched Ethernet (AFDX) [ARINC 664 2005]is
a data network for safety critical applications that utilizes dedicated bandwidth while providing
deterministic Quality of Service (QoS). AFDX is based on IEEE 802.3 Ethernet technology
and utilizes commercial off-the-shelf (COTS) components with certain constraints applied. It is
described specifically by Part 7 of the ARINC 664 Specification, as a special case of a profiled
version of an IEEE 802.3 network per parts 1 & 2, which defines how Commercial Off-the-Shelf
networking components will be used for future generation Aircraft Data Networks (ADN). The
six primary aspects of AFDX include full duplex, redundancy, deterministic, high speed perfor-
mance, switched and profiled network.
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2.3.1 History of Aircraft Data Networks (ADN)

Prior to AFDX, Aircraft Data Networks utilized primarily the ARINC 429 standard. This
standard, developed over thirty years ago and still widely used today, has proven to be highly
reliable in safety critical applications. This ADN can be found on a variety of aircraft from
both Boeing and Airbus, including the B737, B747, B757, B767 and Airbus A330, A340, A380
and the upcoming A350. ARINC 429 utilizes a unidirectional bus with a single transmitter and
up to twenty receivers. A data word consists of 32 bits communicated over a twisted pair cable
using the Bipolar Return-to-Zero Modulation. There are two speeds of transmission: high speed
operates at 100 kbit/s and low speed operates at 12.5 kbit/s. ARINC 429 operates in such a
way that its single transmitter communicates in a point-to-point connection, thus requiring a
significant amount of wiring which amounts to added weight.

Another standard, ARINC 629, introduced by Boeing for the 777 provides increased data
speeds of up to 2 Mbit/s and allowing a maximum of 120 data terminals. This ADN operates
without the use of a bus controller thereby increasing the reliability of the network architecture.
The drawback of this system is that it requires custom hardware which can add significant cost
to the aircraft. Because of this, other manufacturers did not openly accept the ARINC 629
standard.

ARINC 664 is defined as the next-generation aircraft data network (ADN). It is based upon
IEEE 802.3 Ethernet and utilizes commercial off the shelf hardware thereby reducing costs
and development time. AFDX builds on this standard, as is formally defined in Part 7 of the
ARINC 664 specification. AFDX was developed by Airbus Industries for the A380. It has since
been accepted by Boeing and is used on the Boeing 787 Dreamliner. AFDX bridges the gap
on reliability of guaranteed bandwidth from the original ARINC 664 standard. It utilizes a
cascaded star topology network, where each switch can be bridged together to other switches
on the network. By utilizing this form of network structure, AFDX is able to significantly
reduce wire runs thus reducing overall aircraft weight. Additionally, AFDX provides dual link
redundancy and Quality of Service (QoS). Figure 2.3 compares basic architecture of ARINC
and AFDX networks.

2.3.2 Overview of AFDX

AFDX adopted concepts (token bucket) from the telecom standard, Asynchronous Transfer
Mode (ATM), to fix the shortcomings of IEEE 802.3 Ethernet such as in-deterministic behavior
of ”Carrier sense multiple access with collision detection (CSMA/CD)". By adding key elements
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Figure 2.3 – ARINC 429 vs AFDX architecture (courtesy condor engineering inc.)
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from Asynchronous Transfer Mode (ATM) to those already found in Ethernet, and constraining
the specification of various options, a highly reliable Full-Duplex deterministic network is cre-
ated providing guaranteed bandwidth and Quality of Service. Through the use of Full-Duplex
Ethernet, the possibility of transmission collisions is eliminated. A highly intelligent switch,
common to the AFDX network, is able to buffer transmission and reception packets. Through
the use of twisted pair or fiber optic cables, Full-Duplex Ethernet uses two separate pairs or
strands for transmit and receiving data. AFDX extends standard Ethernet to provide high data
integrity and deterministic timing. Further a redundant pair of networks is used to improve
the system integrity. Figure 2.4 depicts a generic AFDX network. It specifies inter-operable
functional elements at the following OSI Reference Model layers:

• Data Link (MAC and Virtual Link addressing concept);

• Network (IP and ICMP);

• Transport (UDP and optionally TCP)

• Application (Network) (Sampling, Queuing, SAP, TFTP and SNMP).

The main elements of an AFDX network are:

• AFDX End Systems

• AFDX Switches

• AFDX Links

2.3.3 Virtual Links (VL)

The central feature of an AFDX network are its Virtual Links (VL). In one abstraction, it is
possible to visualize the VLs as an ARINC 429 style network each with one source and one or
more destinations as shown in figure 2.5. Virtual Links are unidirectional logic path from the
source end-system to all of the destination end-systems. Unlike that of a traditional Ethernet
switch which switches frames based on the Ethernet destination or MAC address, AFDX routes
packets using a Virtual Link ID. The Virtual Link ID is a 16-bit Unsigned integer value that
follows the constant 32-bit field. The switches are designed to route an incoming frame from one,
and only one, End System to a predetermined set of End Systems. There can be one or more
receiving End Systems connected within each Virtual Link. Each Virtual Link is allocated
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Figure 2.4 – AFDX network (courtesy condor engineering inc.)

dedicated bandwidth known as Bandwidth Allocation Gap (BAG) with the total amount of
bandwidth defined by the system integrator. However total bandwidth can not exceed the
maximum available bandwidth on the network. Bi directional communications must therefore
require the specification of a complimentary VL. Each VL is frozen in specification to ensure
that the network has a designed maximum traffic, hence performance. Also the switch, having
a VL configuration table loaded, can reject any erroneous data transmission that may otherwise
swamp other branches of the network. Additionally, there can be sub-virtual links (sub-VLs)
that are designed to carry less critical data. Sub-virtual links are assigned to a particular Virtual
Link. Data is read in a round robin sequence among the Virtual Links with data to transmit.
Also sub-virtual links do not provide guaranteed bandwidth or latency due to the buffering, but
AFDX specifies that latency is measured from the traffic regulator function anyway.

A generic AFDX switch architecture is shown in figure 2.6. Each switch has filtering,
policing, and forwarding functions that should be able to process at least 4096 VLs (this seems
like a system specific derived requirement in part 7). Therefore, in a network with multiple
switches (cascaded star topology), the total number of Virtual Links is nearly limitless. There
is no specified limit to the number of Virtual Links that can be handled by each End System
(except the one imposed by the VL ID field size in the packet header), although this will be
determined by the BAG rates and max frame size specified for each VL versus the Ethernet
data rate. However, the number sub-VLs that may be created in a single Virtual Link is limited
to four. The switch must also be non-blocking at the data rates that are specified by the system
integrator, and in practise this may mean that the switch shall have a switching capacity that
is the sum of all of its physical ports.
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Figure 2.5 – AFDX virtual links.

Figure 2.6 – AFDX switch architecture.
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The AFDX network is being adapted in many modern aircraft. At present it is being used in
Airbus A380, Boeing 787, Airbus A400M, Airbus A350, Sukhoi Superjet 100, AgustaWestland
AW101, AgustaWestland AW149 and some others.
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For certification purpose, it is mandatory to prove maximum latency in the airline avion-
ics network, such as AFDX. Indeed, with respect to real-time characteristics of avionics sys-
tems, communication infrastructure among avionics equipment need to guarantee that when
one equipment sends a message to another equipment, the transmission delay does not exceed
a maximum value. This transmission delays depends on different possible scenarios, i.e. the
instant when each message is sent, the position of the message in the queue, etc. In order to
find the maximum transmission delay, we need to compute the worst-case configuration which
leads to this delay.

In this chapter we will present these techniques and methods which are being used for worst
case delay analysis for an AFDX network. We can broadly categorize the techniques to find
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worst case communication delays in AFDX network into two main categories:

• Techniques which give a sure upper bound on end to end communication delays.

– Network calculus and Trajectory approach

• Techniques which evaluate exact end to end communication delays.

– Model checking and Exhaustive simulation

At present, Network calculus is actually used for AFDX certification, because it was one of the
first efforts in this direction, but other methods should be considered and will be presented in
the following sections.

3.1 Bounds of Worst Case End-to-End Communication Delays

To guarantee the maximum transmission delays, a first approach consists in finding the bounds
of the worst case end to end delays. Two methods can be applied in this context and they will
be presented in this section: Network calculus and Trajectory approach.

3.1.1 Network Calculus

Network calculus (NC) is a theoretical framework that provides deep insights into flow prob-
lems encountered in networking. The foundation of network calculus lies in the mathematical
theory of dioids, and in particular, the Min-Plus dioid (also called Min-Plus algebra) [Jean-Yves
Le Boudec 2001]. Network calculus is extensively used for analyzing performance guarantees in
computer networks. Network calculus was first applied to AFDX network by Christian Fraboul
et al. in [Fraboul 2002b, Frances 2006], which lead to the certification of AFDX Network on
Airbus A380 aircraft. In following sections, network calculus theory and it’s application to
AFDX network is presented.

3.1.1.1 Network Calculus Theory

In this section a brief overview of network calculus is presented. A more detailed presentation
can be found in [Jean-Yves Le Boudec 2001].
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To provide guarantees to data flows in a network, it is necessary that the network has some
kind of bounds on its resources. This means that all sources must have guarantees on maximum
traffic emission and all service providing elements must have guarantees on capacity. To model
the data generated by network elements (sources), with a given data rate constraint, a concept
of arrival curve is used. In order to provide reservations, network nodes in return need to offer
some guarantees to flows. This is done by packet schedulers. The details of packet scheduling
are abstracted by using the concept of service curve. Below we describe these concepts of net-
work calculus.
Consider a simple system S as shown in figure 3.1. It has one input and one output. Figure
3.1a shows the number of bits entering the system S at any time instant t and number of bits
exiting the system S at any time t. Figure 3.1b shows the same system S but the input and
output traffic is cumulative instead of being instantaneous. This means that the graphs display
sum of number of bits received or sent till time t. We can see that with cumulative traffic, the
graph is always increasing because of the summation of bits and is easier to understand. In
network calculus, such graphs are best represented by the use of cumulative functions.
Cumulative Functions: Network calculus models data flows, as cumulative functions which
can be both continuous time and discrete time. A cumulative function R(t) is defined as the
number of bits in the flow during time interval [0, t]. Function R(t) is always a wide-sense
increasing function. Generally it is assumed that R(0)=0, unless stated otherwise. In figure
3.1b, both the input traffic and output traffic is an example of cumulative function. Cumulative
functions describe the relationship between total number of bits and time; they give us sum of
all bits arrived (or left) till a time instant t.
Input and Output Function: Let’s consider a system S as a black-box. S receives input
data and after processing it transmits the data at output. If input is defined by cumulative
function R(t), then the output is defined by another cumulative function R∗(t) called as output
function. Figure 3.1c shows an example of input and output functions. The graph in black
represents input function and graph in red represents corresponding output function. The hor-
izontal distance d(t) between input and output function graph represents the delay that an
input traffic will experience while the vertical distance x(t) between input and out function
represents the total number of bits present in the system as backlog. R1(t) and R∗1(t) show a
continuous function of continuous time (fluid model); we assume that packets arrive bit by bit,
for a duration of one time unit per packet arrival. Functions R2(t) and R∗2(t) show continuous
time with discontinuities at packet arrival times (times 1, 4, 8, 8.6 and 14); we assume here that
packet arrivals are observed only when the packet has been fully received.
Arrival Curve: Arrival curve is a way to constrain data emitted by sources. Given a wide-
sense increasing function α defined for t ≥ 0, we say that a flow defined by cumulative function
R is constrained by α if and only if for all s ≤ t:
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(a) Instantaneous traffic at any given instance t.

(b) Cumulative traffic till time t.

(c) Examples of Input Output cumulative functions.

Figure 3.1 – A simple system with one input and one output port.
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(a) A leaky bucket arrival curve. (b) A rate latency service curve.

Figure 3.2 – Arrival and service curves.

R(t)−R(s) ≤ α(t− s) (3.1)

The equation implies that α is an arrival curve for function R, or R is α smooth. In simple
words, α is an upper bound on R. A well known example of arrival curve is a leaky bucket
arrival curve γr,b shown in figure 3.2a where b represents initial burst of data and r represents
steady rate. It is defined as:

γr,b(t) =

 0 if t < 0
rt+ b otherwise

(3.2)

Service Curve: Consider a system S and a flow through S with input and output function
R and R∗ respectively. We say that S offers to the flow α a service curve β if and only if β
is wide sense increasing, β(0) = 0 and R∗ ≥ R ⊗ β, where ⊗ is min-plus convolution operator.
This definition implies that β is also a wide sense increasing function and for all t ≥ 0 we have:

R∗(t) ≥ inf
s≤t

(R(s) + β(t− s)) (3.3)

This means that the system S offers a minimum guaranteed service characterized by β to inputs.
A well known example of service curve is rate latency service curve βR,T shown in figure 3.2b
where R represents rate and T represents the bound on maximum initial delay for the bits of
input flow. It is defined as:

βR,T (t) =

 0 if t < T
R(t− T ) otherwise

(3.4)

Network Calculus Bounds: Network calculus has three main results. These are bounds for
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lossless systems with service guarantees. The first result is about backlog bound. It states that
the vertical distance between arrival curve and service curve presents upper bound on backlog.
More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service
curve β then the backlog R(t) − R∗(t) (the difference between input and output function) for
all values of time t satisfies the following:

R(t)−R∗(t) ≤ sup
s≥0
{α(s)− β(s)} (3.5)

The second result is about delay bound. It states that the horizontal distance between the
arrival curve and service curve presents upper bound on the delay experienced by the traffic.
More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service
curve β then the delay d experienced by the flow R is bounded by the maximum horizontal
distance between the curve α and β (denoted by h(α, β)). The delay d(t) for all values of time
t satisfies the following:

d(t) ≤ h(α, β) = sup
z≥0
{β−1(z)− α−1(z)} (3.6)

The third result is about output flow. It states that the output flow of a system can be con-
strained with an arrival curve α∗, obtained by min-plus deconvolution (�) of arrival curve α
and service curve β. i.e:

α∗ = α� β (3.7)

Concatenation: Another important result of network calculus is about concatenation of nodes.
It states that if a flow passes from two or more systems in sequence, then we can merge these
systems into a single system. More precisely, assume a flow traverses systems S1 and S2 in
sequence. Assume that S1 offers a service curve β1 and S2 offers a service curve β2 to the flow.
Then the concatenation of the two systems offers a service curve of β1 ⊗ β2 to the flow.

3.1.1.2 Application to AFDX

To use network calculus on AFDX network, the traffic must respect some constraints. As
discussed in 2.3, a virtual link (VL) is a static mono-sender multicast flow. A VL is constrained
by minimum frame size Smin, maximum frame size Smax and a minimum interval between two
consecutive frames called BAG. Therefore, a VL can be modeled in network calculus as a leaky
bucket arrival curve γSmax

BAG
,Smax

. Similarly, a switch output port can be modeled as rate latency
service curve βR,T where R is the throughput of Ethernet link and T is the switching latency
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(a) Delay at node s1.

(b) Delay at node s2.

Figure 3.3 – Network calculus example.

of the AFDX switch. The results can be propagated through the entire network by using the
output flow equation 3.7. The output of one switch becomes input of the next switch. This
approach was applied to industrial configuration of the AFDX network by Christian Fraboul et
al. in [Fraboul 2002b, Frances 2006]. In order to explain how the network calculus can be used
to find communication delays, we will consider a simple example.

Network Calculus Example: Let’s consider a simple example where two flows f1 and f2
pass through two nodes s1 and s2 as shown in figure 3.3. Assuming that flows are represented
by leaky bucket arrival curve and nodes offer a rate latency service curve, we can find the delay
experienced by flow f1 in both nodes s1 and s2 graphically, as shown in figure 3.3. At node
s1, there are two flows entering the node. We can aggregate these flows to a single flow which
is equivalent to f1 + f2 whose arrival curve is shown as black line in figure 3.3a. This arrival
curve is deconvoluted with service curve of node s1 (shown as green line) to get the arrival curve
at the output of node s1 (dotted black line). The bound on maximum delay at this node is the
maximum horizontal distance between arrival curve of f1 + f2 (black line) and service curve of
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s1 (green line). The output of node s1 is input of node s2. Therefore at node s2, output arrival
curve of node s1 (dotted black line) is taken as input arrival curve, and the service curve for
node s2 is used for calculations at this node, as shown in figure 3.3b. The bound on maximum
delay at this node is the maximum horizontal distance between arrival curve (dotted black line)
and service curve of s2 (green line). The end to end delay for flow f1 is sum of delays at node
s1 and s2.

This worst case delay analysis is obviously pessimistic. The Network Calculus is a holistic
approach[Tindell 1994] and the worst case scenario is considered on each node visited by a
flow, taking into account maximum possible jitters introduced by previously visited nodes.
This approach can indeed lead to impossible scenarios. There are also other pessimism causes,
intrinsic to the Network Calculus theory, as envelops are used instead of the exact arrival curve
and service curves.

3.1.2 Trajectory Approach

The Trajectory approach has been developed to get deterministic upper bounds on end-to-end
response times in distributed systems [Martin 2004, Martin 2006a, Martin 2006b, Migge 1999].
This approach considers a set of sporadic flows with no assumption concerning the arrival
times of packets. Thus the obtained upper bounds are valid for every possible arrival times
of packets. Trajectory approach considers the sequence of nodes visited by a frame along it’s
trajectory. Unlike the holistic approach in network calculus, the Trajectory approach is based
on the analysis of the worst case scenario experienced by a packet on its trajectory and not on
any visited node. This timing analysis approach enables to focus on a packet from a given flow,
and to construct the packet sequences in each crossed node. The resulting jitters and delays
lead to an end-to-end communication delay computation, which can then be compared to the
upper bounds obtained by deterministic Network Calculus approach.

3.1.2.1 Trajectory Theory

In order to explain the theory behind Trajectory approach, we will consider a simple example.
Suppose the architecture of a distributed system depicted in figure 3.4 [Martin 2006a]. Such a
system is composed of a set of processing nodes (seven in figure 3.4) with some links between
them. Each flow crossing this system follow a static path which is an ordered sequence of nodes.
In the example of figure 3.4, there are two flows τ1 and τ2. τ1 follows the path P1 = {4,5,6,7}.
Node 4 is the entry point of flow τ1 in this system, and is often referred to as ingress node. The
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Figure 3.4 – A distributed system.

Trajectory approach assumes, with regards to any flow τi following path Pi, that any flow τj

following path Pj , with Pj 6= Pi and Pj ∩ Pi 6= ∅, never visits a node of path Pi after having
left this path. In the example of figure 3.4, P2 = {1,5,6,3} and P1 ∩ P2 = {5,6} and the flow τ2

never joins path of flow τ1 after leaving it at node 6.

All flows are scheduled with a FIFO(First In First Out) algorithm in every visited node (non
preemptive policy). Each flow τi has a minimum gap time between two consecutive packets at
ingress node h, denoted as Ti, a maximum release jitter at the ingress node denoted as Ji (it is the
duration between the packet arrival time and the time it is taken into account by the scheduler),
an end-to-end deadline Di which is the maximum end-to-end response time acceptable and a
maximum processing time Ch

i on each node h, with h ∈ Pi. The transmission time of any packet
on any link between nodes has known lower and upper bounds Trmin and Trmax (corresponding
to the minimum packet size Smin and maximum packet size Smax respectively) and there are
neither collisions nor packet losses on links. This is illustrated in figure 3.5.

The end-to-end response time of a packet is the sum of the times spent in each crossed nodes
and the transmission delays on links. The transmission delays on links are upper bounded by
Trmax. Considering the FIFO scheduling, the time spent by a packet m in a node h depends
on the pending packets in h at the arrival time of m in h (because all these pending packets
have a higher priority than m due to FIFO scheduling and, thus, will be processed before m).
The problem is then to upper bound the overall time spent in the visited nodes. The solution
proposed by the Trajectory approach is based on the busy period concept. A busy period of
level L is a time interval [t,t′] within which jobs of priority L or higher are processed throughout
the period [t,t′] but no jobs of priority L or higher are present just before and after the period
[t,t′]. In simple words, busy period can be considered as the time duration during which port
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Figure 3.5 – Model used by Trajectory approach.

is busy continuously.

The Trajectory approach considers a packet m from flow τi generated at time t, it identifies
the busy period and the packets impacting its end-to-end delay on all the nodes visited by m.
It enables the computation of the latest starting time of m on its last node. This computation
will be illustrated in the context of AFDX network in next section.

3.1.2.2 Application to AFDX

The Trajectory approach is applied to AFDX network in the following way:

• Each AFDX switch output port including the output link becomes a node of Trajectory
approach.

• The switching latency of AFDX switches is represented by links of trajectory approach.

• A VL path of AFDX network corresponds to a flow in Trajectory approach.

Assumptions of Trajectory approach are satisfied in AFDX network:



3.1. Bounds of Worst Case End-to-End Communication Delays 35

• AFDX switch output ports implement FIFO service discipline, which satisfies the assump-
tion of FIFO service discipline used in Trajectory approach.

• AFDX switching latency is upper bounded by a fixed value (16 µs), hence L=Lmin=Lmax=16
µs.

• There are no collisions on the AFDX networks due to Full Duplex links and buffers are
dimensioned so that no packet is lost.

• AFDX network is configured so that a VL path never crosses another VL path more than
once.

• Routing of the VLs is statically defined.

• VL parameters match the definition of flow in Trajectory approach i.e. Ti = BAG, Ch
i =

Smax/R, Ji = 0 and R = 100 Mb/s

To explain how the trajectory approach works on AFDX network, a simple example will be used
to illustrate the concept.
Trajectory Approach Example: Let’s consider an example of AFDX network shown in
figure 3.6, in order to illustrate the Trajectory approach theory. We consider that:

• All the flows have identical characteristics : BAG = 4000µs and Smax = 4000bits.

• The entire network works at R = 100Mb/s and the technological latency in an output
port is L = 16µs.

• There are five end systems (e1 to e5) which are sending data and two end systems which
are receiving the data (e6 and e7).

• Each sending end system emits one VL. All VLs arrive at end-system e6, except for v2
which ends at end-system e7.

As discussed before, Trajectory approach is based on the busy period concept, therefore we
must determine busy periods of the AFDX network shown in figure 3.6. Figure 3.7 shows an
arbitrary scheduling of the packets of AFDX network in figure 3.6. The packet of a VL vi is
denotes as i. Packet 3 is under study. Time of origin is chosen as the arrival time of packet
3 on node e3 (denoted as ae3

3 ). After being processed in node e3 and after a 16µs switching
latency delay, the packet arrives at node S2 at time aS2

3 = 56µs. Packet 4 arrives on node S2
at time aS2

4 = 20µs and is immediately processed. As packet 3 arrived after packet 4 it has to
wait until the output port is freed by packet 3. Packet 4 arrives at node S3 at time aS3

4 = 76µs
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Figure 3.6 – AFDX network for Trajectory approach example.

where it is processed after packet 1 and packet 5 which arrived before it at time aS3
1 = 5µs and

aS3
5 = 38µs respectively. Packet 3, which is the last packet to be processed in the busy period
bpS3 arrives at node S3 at time aS3

3 = 116µs.

Packet 3 from flow v3 crosses three busy periods (bpe3, bpS2 and bpS3) on its trajectory. Let
us consider bpS3 , the busy period of level corresponding to the priority of packet 3 in which
packet 3 is processed on node S3. Let f(S3) be the first packet processed in bpS3 with priority
higher than or equal to this packet 3. As the flows may follow different paths in the network
depending upon the static routing defined by AFDX network, therefore it is possible that packet
f(S3) do not come from the same previous node as packet 3 (which is true in this example,
because packet 1 comes from node S1 and packet 3 comes from node S2). We then define p(S2)
as the first packet processed between f(S3) and packet 3 that comes from the same node as
packet 3 (here p(S2) is packet 4 from node S2). Packet p(S2) has been processed on node S2 in
a busy period bpS2 of level corresponding to the priority of p(S2). f(S2) is then the first packet
processed in bpS2 with a priority higher or equal to the priority of p(S2). Here, we have f(S2)
= p(S2), which is not always the case. The same naming process is applied backwards until the
ingress node of the VL is reached: the busy period bpe3 on node e3, of level corresponding to
the priority of packet p(e3) in which f(e3) is processed.

Let ah
m be the arrival time of packet m on node h and consider the arrival time of packet

f(e3) in node e3 as time of origin, then ae3
f(e3) = 0. By adding parts of the busy periods

crossed by packet 3 on it’s path, we can express the latest starting time of packet 3 in node
S3. The calculation of which part of busy period to add is bit tricky to understand. This part
is calculated in a node h, as the processing times of the packets between f(h) and p(h) minus
the difference between the arrival time of p(h − 1) (denoted as ah

p(h−1)) and f(h) (denoted as
ah

f(h)). Hence, part of the busy period to consider = ∑
Ch

m − (ah
p(h−1) − a

h
f(h)) where Ch

m is the
processing time or transmission time of packet m in node h. Let us apply this to our example
in 3.7.
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Figure 3.7 – Identification of busy periods.
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• In node e3, f(e3) = p(e3) and it is first node therefore ae3
p(e3−1) − a

e3
f(e3) = 0, so we count:

Ce3
3

• In node S2, f(S2) = p(S2). Thus, we count: CS2
4 − (aS2

p(e3) − a
S2
f(S2))

• In node S3, there is no packet p(S3). Thus, we count the packets from f(S3) until the
packet before packet 3: CS3

1 + CS3
5 + CS3

4 − (aS3
p(S2) − a

S3
f(S3))

• Finally, if we add the transmission times between the nodes, we can get the latest starting
time of packet 3 on node S3, which is :

aS3
3 = Ce3

3 +L+CS2
4 − (aS2

p(e3) − a
S2
f(S2)) +L+CS3

1 +CS3
5 +CS3

4 − (aS3
p(S2) − a

S3
f(S3)) (3.8)

For our example, we have Cm
h = C = Smax/R = 40µs and Lmin = Lmax = L = 16µs.

Using these values in equation 3.8, we get:

aS3
3 = 5C + 2L− (aS2

p(e3) − a
S2
f(S2))− (aS3

p(S2) − a
S3
f(S3))

= 5× 40 + 2× 16− (56− 20)− (76− 5)

= 125µs

(3.9)

For the worst case scenario we need to maximize this latest starting time of packet 3.
According to the Trajectory approach presented in [Martin 2006a], we can do this by ignoring
term (ah

p(h−1)−a
h
f(h)) for every node h on the considered path. This means that the arrival time

of every packet coming from another preceding node should be postponed in order to increase
the departure time of packet 3 in it’s last node. The effect of this postponing is illustrated in
figure 3.8. More precisely, the arrival time of packet 4 at node S2 has been postponed to the
arrival time of packet 3 at node S2 (aS2

4 = aS2
3 = 56µs). In node S3, packets 1 and 5 have

been postponed in order to arrive between packet 4 and 3, therefore: aS3
4 ≤ aS3

1 ≤ aS3
5 ≤ aS3

3 .
The worst case end-to-end delay of packet m is the sum of it’s latest starting time on it’s last
visited node and the processing time of the packet in this last node. Thus the maximum end-
to-end delay of m is: L + Ce3

3 + CS2
4 + L + (CS3

1 + CS3
5 + CS3

4 ) + CS3
3 = 6C + 2L = 272µs.

Trajectory approach, like Network calculus, is pessimistic and can lead to impossible scenarios.
Nonetheless, it does provide sure upper bounds on worst case end to end communication delays
of AFDX network.

3.1.3 Pessimism of Network calculus and Trajectory approach

Lot of research has been made since the first application of network calculus to AFDX network
in order to improve the results. In this regard, the results were further improved by tightening



3.1. Bounds of Worst Case End-to-End Communication Delays 39

Figure 3.8 – Maximizing the arrival time in last node.

the end to end bounds by Marc Boyer and Christian Fraboul in [Boyer 2008] by using the
"grouping" technique. In this technique, we "group" the VLs that exit from the same switch
output port and enter another switch together, i.e. Virtual Links that share two segments of
path at least. The key issue is that the frames of those VLs are serialized once exiting the
first multiplexer and thus they don’t have to be serialized again in the following switches. This
optimization always gives tighter bounds. Another improvement in network calculus for AFDX
was done by Xiaoting Li in [Li 2010] where the authors incorporated the local scheduling in
the end systems into network calculus by using offsets. This resulted in further reduction in
bounds of end to end delays calculated by network calculus.

The Trajectory approach was first applied to AFDX network in [Bauer 2009]. Later on
the results were further improved in [Bauer 2010] by using the concept of "grouping", just like
network calculus where VLs that share same segments of the network are grouped together.
On average, Trajectory approach calculates tighter bounds as compared to network calculus
(but in some cases, Network calculus has tighter bounds than Trajectory approach) and hence
it improves the end-to-end delays of AFDX network calculated earlier with help of network
calculus. Still, the results of Trajectory approach are pessimistic, and the measure of this
pessimism was estimated in [Bauer 2010] and concluded that the trajectory approach is at
least two times less pessimistic than the Network Calculus approach. Also, the upper bound of
pessimism in Trajectory approach varies from 0% to 33% with average of about 7% (remember
that without knowing the exact worst case delay, it is not possible to find exact pessimism as
illustrated in figure 1.2).
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3.1.4 Conclusion

Network calculus and Trajectory approach have relatively less computational complexity in
algorithms used for calculations but both methods calculate pessimistic sure upper bounds on
end to end communication delays. Presently, network calculus is being used for certification on
commercial aircraft such as Airbus A380 because it was the first approach used for calculating
end to end communication delay bounds. Trajectory approach, on average, gives better results as
compared to network calculus. Both methods don’t provide us exact end to end communication
delays, therefore, we need other methods to find exact communication delays. In the next
section, we will talk about the methods which give us exact end to end communication delays.

3.2 Exact Worst Case End-to-End Communication Delays

A second approach to guarantee the maximum transmission delay in AFDX network is to find
the exact worst case end to end communication delays. Finding exact worst case communication
delays can be classified into two main approaches: a formal methods approach of model checking
and exhaustive simulation approach. Both approaches require some form of modeling in order
to transform AFDX network into a model which underlying approach can work with. In simple
words, in order to find exact worst case communication delays, one must check all possible cases
or scenarios. These cases or scenarios are often referred to as state-space . Theoretically, the
state-space of AFDX communication network is infinite (because of continuous real-time nature
of the network) therefore these approaches also require some kind of state-space reduction. In
the following sections, we will present these approaches.

3.2.1 Model Checking

Model checking can be used to find exact worst case communication delays of AFDX network.
We need to model the AFDX network using model description language of the model checker
being used for this purpose. Then, we need to formalize some properties using the property
specification language of the tool/model checker being used. And finally, we run the model
checker to check the property we have formalized by using the AFDX network model.
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3.2.1.1 Application of Model checking on AFDX Network

As we have seen in section 2.3 that an AFDX network is a real-time system which requires
timing constraints. So to model an AFDX network, we need to model time. Also we are
interested in finding exact end to end communication delays, therefore we must model how
the communication works in AFDX network. This includes the behavior of each end system
which generates packets to be transmitted on the AFDX network. To model these entities of
the AFDX network we need:

• A language to model the behavior of the system i.e AFDX network (including time,
communication and end system etc).

• A language to describe the properties which we want to verify, such as what will be the
maximum delay from the transmission of a packet from the source to the reception of this
packet at the destination? This can be different than the modeling language of the system
or it can be same.

• A tool to check that the system model satisfies the property we desire to verify.

For this purpose, two kind of model checkers can be used for AFDX network communication
delay analysis: Real-time model checkers and Simply timed (or discrete time) model checkers.
Further detail about these types and related software can be found in Appendix A. AFDX
network can be modeled as simply timed system. Hence we can use both real-time model
checkers and Plain or un-timed model checkers with Explicit time model checking approach.
But AFDX network is a large real time system and its not feasible to use Plain model checkers
with explicit time technique for AFDX network due to huge state space contributed by explicit
modelling of time [Adnan 2010a]. This section will not describe each model checker listed in the
table A.1 of Appendix A but will focus only on model checkers with potential for use in AFDX
network communication delay analysis. Two prominent model checkers suit best for this job:
Timed Automata based model checkers (using UPPAAL [UPPAAL ] tool) from real-time model
checkers category and NuSMV [NuSMV ] from simply timed (discrete clock) model checkers.
In the following sections we will see how to model AFDX network in these tools and how to
evaluate worst case end-to-end communication delays.

3.2.1.2 NuSMV and AFDX Network

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods
group in the Automated Reasoning System division at ITC- IRST, the Model Checking group
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at Carnegie Mellon University , the Mechanized Reasoning Group at University of Genova and
the Mechanized Reasoning Group at University of Trento. NuSMV is a reimplementation and
extension of SMV, the first model checker based on BDDs (Binary Decision Diagrams). NuSMV
has been designed to be an open architecture for model checking, which can be reliably used
for the verification of industrial designs, as a core for custom verification tools, as a testbed for
formal verification techniques, and applied to other research areas. NuSMV2, combines BDD-
based model checking component that exploits the CUDD library developed by Fabio Somenzi
at Colorado University and SAT-based model checking component that includes an RBC-based
Bounded Model Checker, connected to the SIM SAT library developed by the University of
Genova.

The main features of NuSMV are:

• Functionalities. NuSMV allows for the representation of synchronous and asynchronous
finite state systems, and for the analysis of specifications expressed in Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL), using BDD-based(Binary Decision Dia-
gram) and SAT-based(Boolean Satisfiability) model checking techniques. Heuristics are
available for achieving efficiency and partially controlling the state explosion. The in-
teraction with the user can be carried on with a textual interface, as well as in batch
mode.

• Architecture. A software architecture has been defined. The different components and
functionality of NuSMV have been isolated and separated in modules. Interfaces between
modules have been provided. This reduces the effort needed to modify and extend NuSMV.

• Quality of the implementation. NuSMV is written in ANSI C, is POSIX compliant, and
has been debugged with Purify in order to detect memory leaks. Furthermore, the system
code is thoroughly commented. NuSMV uses the state of the art BDD package developed
at Colorado University, and provides a general interface for linking with state-of the-art
SAT solvers. This makes NuSMV very robust, portable, efficient, and easy to understand
by people other than the developers.

The input language of NuSMV is designed to allow for the description of Finite State
Machines (FSMs) which range from completely synchronous to completely asynchronous, and
from the detailed to the abstract. One can specify a system as a synchronous Mealy machine, or
as an asynchronous network of non-deterministic processes. The language provides for modular
hierarchical descriptions, and for the definition of reusable components. Since it is intended
to describe finite state machines, the only data types in the language are finite ones: Boolean,
scalars and fixed arrays. Static data types can also be constructed.
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The primary purpose of the NuSMV input is to describe the transition relation of the FSM;
this relation describes the valid evolution of the state of the FSM. In general, any propositional
expression in the propositional calculus can be used to define the transition relation. This
provides a great deal of flexibility, and at the same time a certain danger of inconsistency. For
example, the presence of a logical contradiction can result in a deadlock; a state or states with
no successor. This can make some specifications vacuously true, and makes the description
unimplementable. While the model checking process can be used to check for deadlocks, it is
best to avoid the problem when possible by using a restricted description style. The NuSMV
system supports this by providing a parallel-assignment syntax. The semantics of assignment
in NuSMV is similar to that of single assignment data flow language. By checking programs
for multiple parallel assignments to the same variable, circular assignments, and type errors,
the interpreter insures that a program using only the assignment mechanism is implementable.
Consequently, this fragment of the language can be viewed as a description language, or a
programming language. Comprehensive details of NuSMV input language can be found in
[NuSMV ].

To model AFDX network in NuSMV, we need to abstract basic and necessary characteristics
of AFDX network. We should not model every minute detail of AFDX network because it will
result in huge model which will not be good for model checking. On the other hand, too much
of abstraction can lead to incomplete model and hence will give false results. Therefore it is
very important to model the AFDX network in best possible way for model checking purposes.
In the paragraphs below, the modeling approach is described for NuSMV along with the results.

Modeled Characteristics. Basic characteristics for the AFDX network, necessary for mod-
eling purpose are:

• End Systems

– Output port

– Scheduling at output port

– Packet size

• Switches

– Input buffer

– Output port

– Packet queues and FIFO functionality
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Figure 3.9 – Schematic view of sample AFDX network for NuSMV model.

Functionality of each End System is modeled with help of different NuSMV modules. For
example, each VL is modeled as a separate module in NuSMV. Similarly functionality of Switch
is also modeled with different modules. Each path within the switch from input to output port
for each VL is modeled with a module. The process is explained with help of sample AFDX
network in figure 3.9. Please note that values for VL periods and packet sizes (equivalent
transmission times) are not strictly coherent with AFDX standard. They were chosen differently
for purely comparative study purpose. There are five end systems and three switches. End
system ES1 to ES4 transmit 3 VLs each and end system ES5 receives all of these VLs through
switch SW3. AFDX network is modeled with the analogy of CPU tasks, working on basis of
request and granted mechanism with dependency structure. Each end system implements a
scheduling of its VLs, as illustrated in Figure 3.11a. Frames are generated in a known order with
offsets between their generation times. It corresponds to the modelling of the Network Calculus
approach proposed in [Li 2010] as mentioned in paragraph 3.1.1.2.So, each end system sends its
first VL packet and then wait for the offset period before sending the next VL packet and so
on. Offsets are modeled in NuSMV with timers and at the end of each timer, the corresponding
VL task is triggered.

Each VL model in NuSMV has four parameters; timeout, processor_granted, request and
finish. timeout is used with internal variable state to trigger the start of VL. state is also used
to count the execution time. In NuSMV,each transition takes one unit time, so length of state
represents execution time of the VL, or in this case it represents transmission time of the VL.
processor_granted is used to indicate that output port is free so VL can start its transmission.
request is used to model the readiness of the VL and finish is used to indicate when VL has
transmitted its data. This is shown in code snippet in figure 3.10. For VLs, modules are named
as V Lnm where n represents end system number and m represents the VL number of this end
system, e.g V L11 means first VL of end system ES1. Initial state is 0, defined by line 16 in
figure 3.10. Module stays in this state till the timeout signal is received (this signal is coming
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Figure 3.10 – NuSMV code for modeling a VL.

from the timer to indicate that VL is ready to transmit according to the scheduling of VLs, as
shown in figure 3.11a). As soon as timeout signal is received, the module starts, indicated by
start defined on line 9 in figure 3.10 and goes to state 1 as defined on line 18. The module will
continue to increase state by one (line 22) whenever it has the processor_granted signal (line
20). In the case where this VL is interrupted due to the higher priority VL, the module will
wait in its current state (line 20). Since the V L11 in code snippet in figure 3.10 has execution
time of 3 time units, the state variable has length ranging from 0 to 3. When we have reached
state 3, the module indicates that VL has finished its transmission, indicated by line 10 and
we go back to initial state (line 19) and wait for the next period (next activation of timeout
signal).

One timer is used for each end system to control the transmission of first packet by the end
system, e.g for ES1 the timer timeoutT1 is used. After the transmission of first packet of a given
end system (e.g VL1 of ES1), the first offset timer is triggered, in above case P11finish triggers
offset11 timer which models the offset between VL1 and VL2. Similarly, end of offset11 timer
triggers transmission of VL2 which in turn triggers offset12 timer (representing offset between
VL2 and VL3) and so on. This process repeats for all VLs of the end system in an infinite loop.
The process is shown in figure 3.11a. The packet size of each VL is modeled as execution time
of the task modeled for this VL.

Similar methodology is adopted for the model of AFDX Switch with a major difference
of task priorities. In models of end system, all VLs have fixed sequence and offsets between
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