[Accueil bibliotech]
Accueil > Les thèses en ligne de l'INP

Optimisation de forme d’un avion pour sa performance sur une mission

Gallard, François (2014) Optimisation de forme d’un avion pour sa performance sur une mission. (Aircraft shape optimization for mission performance.)

Texte intégral disponible au format :

PDF - Nécessite un logiciel de visualisation PDF comme GSview, Xpdf ou Adobe Acrobat Reader
3.9 Mo

Résumé

Les avions rencontrent de nombreuses conditions d’opérations au cours de leurs vols, comme le nombre de Mach, l’altitude et l’angle d’attaque. Leur prise en compte durant la conception améliore la robustesse du système et finalement la consommation des flottes d’avions. L’optimisation de formes aérodynamiques contribue à la conception des avions, et repose sur l’automatisation de la génération de géométries ainsi que la simulation numérique de la physique du vol. La minimisation de la trainée des formes aérodynamiques doit prendre en compte de multiples conditions d’opération, étant donne que l’optimisation a une unique condition de vol mène a des formes dont la performance se dégrade fortement quand cette condition de vol est perturbée. De plus, la flexibilité structurelle déforme les ailes différemment selon la condition de vol, et doit donc être simulée lors de telles optimisations. Dans cette thèse, la minimisation de la consommation de carburant au cours d’une mission est formulée en problème d’optimisation. Une attention particulière est apportée au choix des conditions d’opérations à inclure dans le problème d’optimisation, étant donne que celles-ci ont un impact majeur sur la qualité des résultats obtenus, et que le cout de calcul est proportionnel à leur nombre. Un nouveau cadre théorique est proposé pour adresser cette question, offrant un point de vue original et surmontant des difficultés révélées par les méthodes a l’état-de-l’ art en matière de mise en place de problèmes d’optimisation multipoints. Un algorithme appelé Gradient Span Analysis (GSA), est proposé pour automatiser le choix des conditions d’opération. Il est base sur la réduction de dimension de l’espace vectoriel engendre par les gradients adjoints aux différentes conditions de vol. Des contributions de programmation a la chaine d’optimisation ont permis d’évaluer les méthodes aux optimisations du profil académique RAE2822 et de la configuration voilure-fuselage XRF-1, représentative des avions de transport modernes. Alors que les formes résultant d’optimisation mono-point présentent de fortes dégradations de performance hors du point de conception, les optimisations multipoints adéquatement formulées fournissent de bien meilleurs compromis. Il est finalement montre que les interactions fluide-structure ajoutent de nouveaux degrés de liberté, et ont un impact sur les optimisations en de multiples conditions de vol, ouvrant des perspectives en matière d’adaptation passive de forme. ABSTRACT : An aircraft encounters a wide range of operating conditions during its missions, i.e. flight altitude, Mach number and angle of attack, which consideration at the design phase enhances the system robustness and consequently the overall fleet consumption. Numerical optimization of aerodynamic shapes contributes to aircraft design, and relies on the automation of geometry generation and numerical simulations of the flight physics. Minimization of aerodynamic shapes drag must take into account multiple operating conditions, since optimization at a single operating condition leads to a strong degradation of performance when this operating condition varies. Besides, structural flexibility deforms the wings differently depending on the operating conditions, so has to be simulated during such optimizations. In the present thesis, the mission fuel consumption minimization is formulated as an optimization problem. The focus is made on the choice of operating conditions to be included in the optimization problem, since they have a major impact on the quality of the results, and the computational cost is proportional to their number. A new theoretical framework is proposed, overcoming and giving new insights on problematic situations revealed by state-of-the-art methods for multipoint optimization problem setup. An algorithm called Gradient Span Analysis is proposed to automate the choice of operating conditions. It is based on a reduction of dimension of the vector space spanned by adjoint gradients obtained at the different operating conditions. Programming contributions to the optimization chain enabled the evaluation of the new method on the optimizations of the academic RAE2822 airfoil, and the XRF-1 wing-body configuration, representative of a modern transport aircraft. While the shapes resulting of single-point optimizations present strong degradations of the performance in off-design conditions, adequately formulated multi-Machmulti- lift optimizations present much more interesting performance compromises. It is finally shown that fluid-structure interaction adds new degrees of freedom, and has consequences on multiple flight conditions optimizations, opening the perspective of passive shape adaptation.

Département ou laboratoire:Centre Européen de Recherche et Formation Avancées en Calcul Scientifique - CERFACS (Toulouse, France)
Directeur de thèse:Mohammadi, Bijan et Montagnac, Marc
Mots-clés:Mécanique des fluides numérique - Optimisation Robuste – Adjoint – Aérodynamique. KEYWORDS : Computational fluid dynamics - Robust optimization – Adjoint – Aerodynamics.
Sujets:Hydraulique > Dynamique des fluides
Mathématiques appliquées
Déposé le:24 Juillet 2014

Administrateur seulement : modifier cet enregistrement


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication