[Accueil bibliotech]
Accueil > Les thèses en ligne de l'INP

Modélisation numérique de la dissolution des cavités karstiques

Guo, Jianwei (2015) Modélisation numérique de la dissolution des cavités karstiques. (Numerical modeling of the dissolution of karstic cavities.)

Texte intégral disponible au format :

PDF - Nécessite un logiciel de visualisation PDF comme GSview, Xpdf ou Adobe Acrobat Reader
7.75 Mo

Résumé

La dissolution de cavités karstiques appelle à une description multi-échelle. A partir d'une discussion des hypothèses les plus fréquemment utilisées, un modèle à l'échelle du pore (ou micro-échelle) est développé pour des schémas réactifs géochimiques simples. L'impact du choix de conditions aux limites réactives ou équilibre thermodynamique est discuté. Ce modèle à l'échelle du pore est ensuite utilisé pour le développement de modèles aux échelles supérieures. Le premier problème traité considère le transport sur une surface chimiquement hétérogène et rugueuse, caractérisée par une condition mixte pour le transfert de masse. Le modèle résultant est un modèle de surface effective (ESCM). Le concept de surface effective est développé à l'aide d'une méthode de décomposition de domaine. Dans ce contexte, vitesse, pression et concentration à la petite échelle près de la surface sont estimées par une méthode de développement asymptotique par rapport aux champs loin de la surface. Des problèmes de fermeture sont alors obtenus qui sont utilisés pour définir la position de la surface effective et les conditions aux limites effectives associées. L'effet sur les propriétés effectives de la position de la surface, des nombres sans dimension est étudié. Une comparaison entre des résultats numériques à petite échelle avec ceux obtenus par le modèle effectif montre un bon accord. Dans le cas du transport dans un milieu poreux, le deuxième problème de changement d'échelle étudié, une méthode de changement d'échelle basée sur la prise de moyenne spatiale est proposée (PMM) à partir du problème à l'échelle du pore avec des conditions aux limites d'équilibre thermodynamique ou réactives non-linéaires. Une expression générale du modèle macroscopique est obtenue impliquant plusieurs propriétés effectives qui sont données par la résolution de problèmes de fermeture à l'échelle du pore. Pour une cellule unitaire représentative stratifiée, les paramètres effectifs sont obtenus analytiquement ou numériquement, alors que les propriétés pour des cellules plus complexes 2D/3D sont obtenus numériquement. L'impact sur les paramètres effectifs des propriétés physiques à l'échelle du pore (en terme de nombre de Péclet, Damköhler et ordre de la réaction) est étudié pour des cellules unitaires 1D, 2D ou 3D. Un exemple d'application du modèle macroscopique est présentée en mettant l'accent sur l'apport potentiel des termes additionnels non-classiques sur la précision des prédictions. Le modèle macroscopique de dissolution de milieu poreux est aussi utilisé comme un modèle à interface diffuse (DIM) pour décrire la dissolution d'une cavité à grande échelle, une cavité de gypse dans l'illustration traitée dans la thèse. Le modèle est basé sur l'approximation de pseudo-constituant, avec une condition d'équilibre à l'échelle du pore sur l'interface fluide-solide. Une méthodologie numérique est proposée pour choisir correctement les paramètres effectifs du DIM de façon à reproduire avec suffisamment de précision les flux et la vitesse de récession de l'interface. Une étude spécifique est effectuée sur l'impact du choix du modèle de bilan de quantité de mouvement macroscopique. De manière intéressante, les résultats numériques ne suggèrent pas un impact très important de ce choix dans le cas des problèmes aux limites traités. Des calculs ont aussi été effectués, dans le cadre d'une approximation de Boussinesq, pour évaluer l'impact éventuel de mouvements de convection naturelle. Le potentiel de la méthode est illustré dans deux cas: un correspondant à une lentille de gypse dans un aquifère, l'autre au cas d'un pilier isolé dans une carrière souterraine. Les conséquences de la dissolution sur la stabilité mécanique sont étudiées à l'aide d'un modèle géomécanique simplifié. Enfin, un cas test est étudié montrant la possibilité d'utiliser le modèle dans le cas de dissolution d'une cavité saline, matériau plus soluble que le gypse. ABSTRATC : The karstic cavity dissolution problems are often studied from a hierarchical point of view. Based on a discussion of the frequently adopted assumptions, a pore-scale model is first developed for a simple geochemistry scheme. The impact of implementing reactive or thermodynamic equilibrium boundary condition at the dissolving surface is discussed. Such a pore-scale model is subsequently used as a basis for developing models at higher scale levels. The first problem deals with transport from a heterogeneous and rough surface characterized by a mixed boundary condition. The resulting macro-scale model takes the form of an effective surface theory. In the homogenized model developed with the effective surface concept (denote ESCM), the original rough surface is replaced locally by a homogeneous and smooth surface, where effective boundary conditions are prescribed. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework the velocity, pressure and concentration are estimated at the micro-scale with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the corresponding boundary conditions. The evolution of some effective properties and the impact of surface geometry and some dimensionless numbers are investigated. A comparison between the numerical results obtained with this effective model and those from direct numerical simulations with the original rough surface shows good agreements. In the case corresponding to mass transport in porous media, upscaling is carried out with the method of volume averaging to develop a macro-scale porous medium model (denote PMM), starting from a pore-scale transport problem involving thermodynamic equilibrium or nonlinear reactive boundary conditions. A general expression to describe the macro-scale mass transport is obtained involving several effective parameters which are given by specific closure problems. The impact on the effective parameters of the fluid properties, in terms of pore-scale Péclet number (Pe), and the process chemical properties, in terms of pore-scale Damköhler number (Da) and reaction order (n), is studied for periodic stratified, 2D and 3D unit cells. An example of the application of the macro-scale model is presented with the emphasis on the potential impact of additional, non-traditional effective parameters appearing in the theoretical development on the improvement of the accuracy of the macro-scale model. The above developed PMM is also used as a Diffuse Interface Model (DIM) to describe the evolution of a gypsum cavity formation induced by dissolution. The method is based upon the assumption of a pseudo-component dissolving with a thermodynamic equilibrium boundary condition. A methodology is proposed in order to choose suitable parameters for the DIM model and hence predict the correct dissolution fluxes and surface recession velocity. Additional simulations are performed to check which type of momentum balance equation should be used. Calculations with a variable density and Boussinesq approximation were also performed to evaluate the potential for natural convection. The results showed that the impact of density driven flows were negligible in the cases under investigation. The potential of the methodology is illustrated on two large-scale configurations: one corresponding to a gypsum lens contained within a porous rock layer and the other to an isolated pillar in a flooded gypsum quarry. Geomechanical consequences of the dissolution in terms of mechanical stability is evaluated with the help of a simplified geomechanical model. A final case is also studied in which gypsum is replaced by salt to show the applicability of the proposed methodology to a rapidly dissolving material

Département ou laboratoire:Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France)
Directeur de thèse:Quintard, Michel
Mots-clés:Milieux poreux - Dissolution - Approche multi-échelle - Cavités de gypse - Effondrements - Fontis. KEYWORDS : Porous media - Dissolution - Modeling - Upscaling - Closure problem - Gypsum
Sujets:Hydraulique > Sciences de la Terre et environnement
Déposé le:09 Octobre 2015

Administrateur seulement : modifier cet enregistrement


Contacts | Infos légales | Plan du site | Intranet

(c)INP de Toulouse 2012 - Tous droits réservés. -  INP Communication